Abstract

Using laser-induced thermal acoustics, we demonstrate nonintrusive and remote sound-speed and temperature measurements in liquid water. Unsteady thermal gradients in the water sample produce fast, random laser beam misalignments, which are the primary source of uncertainty in these measurements. For water temperatures over the range 10 °C to 45 °C, the precision of a single 300-ns-duration measurement varies from ±1 to ±16.5 m/s for sound speed and from ±0.3 °C to ±9.5 °C for temperature. Averaging over 10 s (100 laser pulses) yields accuracies of ±0.64 m/s and ±0.45 °C for sound speed and temperature, respectively.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nagayama, Y. Mori, K. Shimada, M. Nakahara, “Shock hugoniot compression curve for water up to 1 GPa by using a compressed gas gun,” J. Appl. Phys. 91, 476–482 (2002).
    [CrossRef]
  2. K. Takayama, “Applications of shock wave research to medicine,” presented at the 22nd International Symposium on Shock Waves, paper 2010, Imperial College, London, UK, 18–23 July, 1999.
  3. S. Hayakawa, K. Takayama, “Shock wave propagation in model tissue for medical application of shock waves,” presented at the 21st International Symposium on Shock Waves, paper 5836, Great Keppel Island, Australia, 20–25 July, 1997.
  4. G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
    [CrossRef]
  5. G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
    [CrossRef]
  6. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
    [CrossRef] [PubMed]
  7. N. C. Holmes, R. Chau, “Fast time-resolved spectroscopy in shock compressed matter,” J. Chem. Phys. 119, 3316–3319 (2003).
    [CrossRef]
  8. J. Karl, D. Hein, “Measuring water temperature profiles at stratified flow by means of linear Raman spectroscopy,” in Proceedings of the 2nd Japanese–German Symposium on Multi-Phase Flow (Tokyo University, Tokyo, 1997), pp. 349–358.
  9. J. Lou, T. M. Finegan, P. Mohsen, T. A. Hatton, P. E. Laibinis, “Fluorescence-based thermometry: principles and applications,” Rev. Anal. Chem. 18, 235–284 (1999).
    [CrossRef]
  10. E. S. Fry, J. Katz, D. Liu, T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49, 411–418 (2002).
    [CrossRef]
  11. E. B. Cummings, H. G. Hornung, M. S. Brown, P. A. DeBarber, “Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics,” Opt. Lett. 20, 1577–1579 (1995).
    [CrossRef] [PubMed]
  12. R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
    [CrossRef] [PubMed]
  13. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
    [CrossRef]
  14. M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propul. Power 15, 119–127 (1999).
    [CrossRef]
  15. R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
    [CrossRef]
  16. Y. Nagasaka, T. Hatakeyama, M. Okuda, A. Nagashima, “Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: theory and experiment,” Rev. Sci. Instrum. 59, 1156–1168 (1988).
    [CrossRef]
  17. A. A. Maznev, D. J. McAuliffe, A. G. Doukas, K. A. Nelson, “Wide-band acoustic spectroscopy of biological material based on a laser-induced grating technique,” Ultrasound Med. Biol. 25, 601–607 (1999).
    [CrossRef] [PubMed]
  18. H. J. Eichler, P. Günter, D. W. Pohl, “Production and detection of dynamic gratings,” in Laser-Induced Dynamic Gratings, T. Tamir, ed. (Springer-Verlag, Berlin, 1986), pp. 13–37.
    [CrossRef]
  19. E. B. Cummings, I. A. Leyva, H. G. Hornung, “Laser-induced thermal acoustics (LITA) signals from finite beams,” Appl. Opt. 34, 3290–3302 (1995).
    [CrossRef] [PubMed]
  20. M. Chávez, V. Sosa, R. Tsumura, “Speed of sound in saturated pure water,” J. Acoust. Soc. Am. 77, 420–423 (1985).
    [CrossRef]
  21. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]

2003 (3)

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[CrossRef]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

N. C. Holmes, R. Chau, “Fast time-resolved spectroscopy in shock compressed matter,” J. Chem. Phys. 119, 3316–3319 (2003).
[CrossRef]

2002 (2)

K. Nagayama, Y. Mori, K. Shimada, M. Nakahara, “Shock hugoniot compression curve for water up to 1 GPa by using a compressed gas gun,” J. Appl. Phys. 91, 476–482 (2002).
[CrossRef]

E. S. Fry, J. Katz, D. Liu, T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49, 411–418 (2002).
[CrossRef]

2000 (1)

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

1999 (4)

J. Lou, T. M. Finegan, P. Mohsen, T. A. Hatton, P. E. Laibinis, “Fluorescence-based thermometry: principles and applications,” Rev. Anal. Chem. 18, 235–284 (1999).
[CrossRef]

M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propul. Power 15, 119–127 (1999).
[CrossRef]

A. A. Maznev, D. J. McAuliffe, A. G. Doukas, K. A. Nelson, “Wide-band acoustic spectroscopy of biological material based on a laser-induced grating technique,” Ultrasound Med. Biol. 25, 601–607 (1999).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
[CrossRef]

1998 (1)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

1995 (2)

1988 (1)

Y. Nagasaka, T. Hatakeyama, M. Okuda, A. Nagashima, “Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: theory and experiment,” Rev. Sci. Instrum. 59, 1156–1168 (1988).
[CrossRef]

1985 (1)

M. Chávez, V. Sosa, R. Tsumura, “Speed of sound in saturated pure water,” J. Acoust. Soc. Am. 77, 420–423 (1985).
[CrossRef]

1982 (1)

G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

1973 (1)

Ahrens, T. J.

G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

Balla, R. J.

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
[CrossRef]

Bawendi, M. G.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[CrossRef]

Brown, M. S.

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Chau, R.

N. C. Holmes, R. Chau, “Fast time-resolved spectroscopy in shock compressed matter,” J. Chem. Phys. 119, 3316–3319 (2003).
[CrossRef]

Chávez, M.

M. Chávez, V. Sosa, R. Tsumura, “Speed of sound in saturated pure water,” J. Acoust. Soc. Am. 77, 420–423 (1985).
[CrossRef]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Cummings, E. B.

DeBarber, P. A.

Doukas, A. G.

A. A. Maznev, D. J. McAuliffe, A. G. Doukas, K. A. Nelson, “Wide-band acoustic spectroscopy of biological material based on a laser-induced grating technique,” Ultrasound Med. Biol. 25, 601–607 (1999).
[CrossRef] [PubMed]

Eichler, H. J.

H. J. Eichler, P. Günter, D. W. Pohl, “Production and detection of dynamic gratings,” in Laser-Induced Dynamic Gratings, T. Tamir, ed. (Springer-Verlag, Berlin, 1986), pp. 13–37.
[CrossRef]

Finegan, T. M.

J. Lou, T. M. Finegan, P. Mohsen, T. A. Hatton, P. E. Laibinis, “Fluorescence-based thermometry: principles and applications,” Rev. Anal. Chem. 18, 235–284 (1999).
[CrossRef]

Fry, E. S.

E. S. Fry, J. Katz, D. Liu, T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49, 411–418 (2002).
[CrossRef]

Günter, P.

H. J. Eichler, P. Günter, D. W. Pohl, “Production and detection of dynamic gratings,” in Laser-Induced Dynamic Gratings, T. Tamir, ed. (Springer-Verlag, Berlin, 1986), pp. 13–37.
[CrossRef]

Hale, G. M.

Hart, R. C.

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
[CrossRef]

Hatakeyama, T.

Y. Nagasaka, T. Hatakeyama, M. Okuda, A. Nagashima, “Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: theory and experiment,” Rev. Sci. Instrum. 59, 1156–1168 (1988).
[CrossRef]

Hatton, T. A.

J. Lou, T. M. Finegan, P. Mohsen, T. A. Hatton, P. E. Laibinis, “Fluorescence-based thermometry: principles and applications,” Rev. Anal. Chem. 18, 235–284 (1999).
[CrossRef]

Hayakawa, S.

S. Hayakawa, K. Takayama, “Shock wave propagation in model tissue for medical application of shock waves,” presented at the 21st International Symposium on Shock Waves, paper 5836, Great Keppel Island, Australia, 20–25 July, 1997.

Hein, D.

J. Karl, D. Hein, “Measuring water temperature profiles at stratified flow by means of linear Raman spectroscopy,” in Proceedings of the 2nd Japanese–German Symposium on Multi-Phase Flow (Tokyo University, Tokyo, 1997), pp. 349–358.

Hemmerling, B.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

Herring, G. C.

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
[CrossRef]

Holmes, N. C.

N. C. Holmes, R. Chau, “Fast time-resolved spectroscopy in shock compressed matter,” J. Chem. Phys. 119, 3316–3319 (2003).
[CrossRef]

Hornung, H. G.

Hubschmid, W.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

Karl, J.

J. Karl, D. Hein, “Measuring water temperature profiles at stratified flow by means of linear Raman spectroscopy,” in Proceedings of the 2nd Japanese–German Symposium on Multi-Phase Flow (Tokyo University, Tokyo, 1997), pp. 349–358.

Katz, J.

E. S. Fry, J. Katz, D. Liu, T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49, 411–418 (2002).
[CrossRef]

Laibinis, P. E.

J. Lou, T. M. Finegan, P. Mohsen, T. A. Hatton, P. E. Laibinis, “Fluorescence-based thermometry: principles and applications,” Rev. Anal. Chem. 18, 235–284 (1999).
[CrossRef]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Leyva, I. A.

Liu, D.

E. S. Fry, J. Katz, D. Liu, T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49, 411–418 (2002).
[CrossRef]

Lou, J.

J. Lou, T. M. Finegan, P. Mohsen, T. A. Hatton, P. E. Laibinis, “Fluorescence-based thermometry: principles and applications,” Rev. Anal. Chem. 18, 235–284 (1999).
[CrossRef]

Lyzenga, G. A.

G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

Maznev, A. A.

A. A. Maznev, D. J. McAuliffe, A. G. Doukas, K. A. Nelson, “Wide-band acoustic spectroscopy of biological material based on a laser-induced grating technique,” Ultrasound Med. Biol. 25, 601–607 (1999).
[CrossRef] [PubMed]

McAuliffe, D. J.

A. A. Maznev, D. J. McAuliffe, A. G. Doukas, K. A. Nelson, “Wide-band acoustic spectroscopy of biological material based on a laser-induced grating technique,” Ultrasound Med. Biol. 25, 601–607 (1999).
[CrossRef] [PubMed]

Mitchell, A. C.

G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

Mohsen, P.

J. Lou, T. M. Finegan, P. Mohsen, T. A. Hatton, P. E. Laibinis, “Fluorescence-based thermometry: principles and applications,” Rev. Anal. Chem. 18, 235–284 (1999).
[CrossRef]

Mori, Y.

K. Nagayama, Y. Mori, K. Shimada, M. Nakahara, “Shock hugoniot compression curve for water up to 1 GPa by using a compressed gas gun,” J. Appl. Phys. 91, 476–482 (2002).
[CrossRef]

Nagasaka, Y.

Y. Nagasaka, T. Hatakeyama, M. Okuda, A. Nagashima, “Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: theory and experiment,” Rev. Sci. Instrum. 59, 1156–1168 (1988).
[CrossRef]

Nagashima, A.

Y. Nagasaka, T. Hatakeyama, M. Okuda, A. Nagashima, “Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: theory and experiment,” Rev. Sci. Instrum. 59, 1156–1168 (1988).
[CrossRef]

Nagayama, K.

K. Nagayama, Y. Mori, K. Shimada, M. Nakahara, “Shock hugoniot compression curve for water up to 1 GPa by using a compressed gas gun,” J. Appl. Phys. 91, 476–482 (2002).
[CrossRef]

Nakahara, M.

K. Nagayama, Y. Mori, K. Shimada, M. Nakahara, “Shock hugoniot compression curve for water up to 1 GPa by using a compressed gas gun,” J. Appl. Phys. 91, 476–482 (2002).
[CrossRef]

Nellis, W. J.

G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

Nelson, K. A.

A. A. Maznev, D. J. McAuliffe, A. G. Doukas, K. A. Nelson, “Wide-band acoustic spectroscopy of biological material based on a laser-induced grating technique,” Ultrasound Med. Biol. 25, 601–607 (1999).
[CrossRef] [PubMed]

Nocera, D. G.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[CrossRef]

Okuda, M.

Y. Nagasaka, T. Hatakeyama, M. Okuda, A. Nagashima, “Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: theory and experiment,” Rev. Sci. Instrum. 59, 1156–1168 (1988).
[CrossRef]

Pohl, D. W.

H. J. Eichler, P. Günter, D. W. Pohl, “Production and detection of dynamic gratings,” in Laser-Induced Dynamic Gratings, T. Tamir, ed. (Springer-Verlag, Berlin, 1986), pp. 13–37.
[CrossRef]

Querry, M. R.

Roberts, W. L.

M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propul. Power 15, 119–127 (1999).
[CrossRef]

Rudzinski, C. M.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[CrossRef]

Shimada, K.

K. Nagayama, Y. Mori, K. Shimada, M. Nakahara, “Shock hugoniot compression curve for water up to 1 GPa by using a compressed gas gun,” J. Appl. Phys. 91, 476–482 (2002).
[CrossRef]

Sosa, V.

M. Chávez, V. Sosa, R. Tsumura, “Speed of sound in saturated pure water,” J. Acoust. Soc. Am. 77, 420–423 (1985).
[CrossRef]

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

Sundar, V. C.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[CrossRef]

Takayama, K.

K. Takayama, “Applications of shock wave research to medicine,” presented at the 22nd International Symposium on Shock Waves, paper 2010, Imperial College, London, UK, 18–23 July, 1999.

S. Hayakawa, K. Takayama, “Shock wave propagation in model tissue for medical application of shock waves,” presented at the 21st International Symposium on Shock Waves, paper 5836, Great Keppel Island, Australia, 20–25 July, 1997.

Tsumura, R.

M. Chávez, V. Sosa, R. Tsumura, “Speed of sound in saturated pure water,” J. Acoust. Soc. Am. 77, 420–423 (1985).
[CrossRef]

Walker, G. W.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[CrossRef]

Walther, T.

E. S. Fry, J. Katz, D. Liu, T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49, 411–418 (2002).
[CrossRef]

Webb, W. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Williams, R. M.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Wun, A. W.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[CrossRef]

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[CrossRef]

J. Acoust. Soc. Am. (2)

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

M. Chávez, V. Sosa, R. Tsumura, “Speed of sound in saturated pure water,” J. Acoust. Soc. Am. 77, 420–423 (1985).
[CrossRef]

J. Appl. Phys. (1)

K. Nagayama, Y. Mori, K. Shimada, M. Nakahara, “Shock hugoniot compression curve for water up to 1 GPa by using a compressed gas gun,” J. Appl. Phys. 91, 476–482 (2002).
[CrossRef]

J. Chem. Phys. (2)

N. C. Holmes, R. Chau, “Fast time-resolved spectroscopy in shock compressed matter,” J. Chem. Phys. 119, 3316–3319 (2003).
[CrossRef]

G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

J. Mod. Opt. (1)

E. S. Fry, J. Katz, D. Liu, T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49, 411–418 (2002).
[CrossRef]

J. Propul. Power (1)

M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propul. Power 15, 119–127 (1999).
[CrossRef]

Opt. Lett. (1)

Rev. Anal. Chem. (1)

J. Lou, T. M. Finegan, P. Mohsen, T. A. Hatton, P. E. Laibinis, “Fluorescence-based thermometry: principles and applications,” Rev. Anal. Chem. 18, 235–284 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. Nagasaka, T. Hatakeyama, M. Okuda, A. Nagashima, “Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: theory and experiment,” Rev. Sci. Instrum. 59, 1156–1168 (1988).
[CrossRef]

Science (1)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (1)

A. A. Maznev, D. J. McAuliffe, A. G. Doukas, K. A. Nelson, “Wide-band acoustic spectroscopy of biological material based on a laser-induced grating technique,” Ultrasound Med. Biol. 25, 601–607 (1999).
[CrossRef] [PubMed]

Other (4)

H. J. Eichler, P. Günter, D. W. Pohl, “Production and detection of dynamic gratings,” in Laser-Induced Dynamic Gratings, T. Tamir, ed. (Springer-Verlag, Berlin, 1986), pp. 13–37.
[CrossRef]

K. Takayama, “Applications of shock wave research to medicine,” presented at the 22nd International Symposium on Shock Waves, paper 2010, Imperial College, London, UK, 18–23 July, 1999.

S. Hayakawa, K. Takayama, “Shock wave propagation in model tissue for medical application of shock waves,” presented at the 21st International Symposium on Shock Waves, paper 5836, Great Keppel Island, Australia, 20–25 July, 1997.

J. Karl, D. Hein, “Measuring water temperature profiles at stratified flow by means of linear Raman spectroscopy,” in Proceedings of the 2nd Japanese–German Symposium on Multi-Phase Flow (Tokyo University, Tokyo, 1997), pp. 349–358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dependence of the speed of sound on temperature. Temperature uncertainty (vertical bars) increases with temperature for constant uncertainty (horizontal bars) in the speed of sound.

Fig. 2
Fig. 2

Schematic of the LITA apparatus: BS, beam splitter; BD, beam dump; M's, mirrors; PLC, path-length compensator; PMT, photomultiplier tube.

Fig. 3
Fig. 3

Averaged LITA signals from (top) 100-µm- and (bottom) 500-µm-width gratings.

Fig. 4
Fig. 4

Top, single-shot LITA signal (dashed curve) and curve fit (solid curve). Bottom, difference between curve fit and data.

Fig. 5
Fig. 5

Mean LITA measurements (diamonds) and calculated sound speed (solid curve) versus temperature.

Fig. 6
Fig. 6

Mean LITA temperature plotted against type T thermocouple measurements. The dashed line represents perfect agreement.

Fig. 7
Fig. 7

LITA single-shot temperature precision (68% confidence) as a function of temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I sig = A exp ( α t ) + B exp ( β t ) sin ( π f t ) + C exp × ( γ t ) sin ( 2 π f t ) ,
c = λ p f / [ 4 sin ( θ / 2 ) ] .

Metrics