Abstract

Temporal fringe pattern analysis is gaining prominence in speckle correlation interferometry, in particular for transient phenomena studies. This form of analysis, nevertheless, necessitates large data storage. Current compression schemes do not facilitate efficient data retrieval and may even result in important data loss. We describe a novel compression scheme that does not result in crucial data loss and allows for the efficient retrieval of data for temporal fringe analysis. In sample tests with digital speckle interferometry on fringe patterns of a plate and of a cantilever beam subjected to temporal phase and load evolution, respectively, we achieved a compression ratio of 1.6 without filtering out any data from discontinuous and low fringe modulation spatial points. By eliminating 38% of the data from discontinuous and low fringe modulation spatial points, we attained a significant compression ratio of 2.4.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Robinson, “Automatic fringe analysis with a computer image processing system,” Appl. Opt. 22, 2169–2176 (1983).
    [CrossRef]
  2. K. Creath, “Phase shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985).
    [CrossRef]
  3. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  4. D. C. Ghiglia, G. A. Mastin, L. A. Romero, “Cellular automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267–280 (1987).
    [CrossRef]
  5. K. M. Hung, T. Yamada, “Phase unwrapping by regions using least squares approach,” Opt. Eng. 37, 2965–2970 (1998).
    [CrossRef]
  6. J. L. Marroquin, M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995).
    [CrossRef]
  7. D. Kerr, G. H. Kaufmann, G. E. Galizzi, “Unwrapping of interferometric phase fringe maps by the discrete cosine transform,” Appl. Opt. 35, 810–816 (1996).
    [CrossRef] [PubMed]
  8. J. M. Huntley, H. Saldner, “Temporal phase unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993).
    [CrossRef] [PubMed]
  9. J. M. Kilpatrick, A. J. Moore, J. S. Barton, J. D. C. Jones, M. Reeves, C. Buckberry, “Measurement of complex surface deformation by high-speed dynamic phase-stepped digital speckle pattern interferometry,” Opt. Lett. 25, 1068–1070 (2000).
    [CrossRef]
  10. T. E. Carlsson, A. Wei, “Phase evaluation of speckle patterns during continuous deformation by use of phase-shifting speckle interferometry,” Appl. Opt. 39, 2628–2637 (2000).
    [CrossRef]
  11. T. W. Ng, F. S. Chau, “Automated analysis in digital speckle shearing interferometry using an object step-loading method,” Opt. Commun. 108, 214–218 (1994).
    [CrossRef]
  12. T. W. Ng, “Carrier-modulated object step-loading method of automated analysis in digital speckle shearing interferometry,” J. Mod. Opt. 42, 2109–2118 (1995).
    [CrossRef]
  13. J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Sinusoidal least-squares fitting for temporal fringe pattern analysis,” J. Mod. Opt. 49, 2257–2266 (2002).
    [CrossRef]
  14. J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Synchronous detection techniques for temporal fringe pattern analysis,” Opt. Commun. 204, 75–81 (2002).
    [CrossRef]
  15. V. D. Madjarova, H. Kadono, S. Toyooka, “Dynamic electronic speckle pattern interferometry (DESPI) phase analysis with temporal Hilbert transform,” Opt. Express 11, 617–623 (2003), www.opticsexpress.org .
    [CrossRef] [PubMed]
  16. D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proc. IRE 9, 1098–1101 (1952).
    [CrossRef]
  17. P. Elias, “Universal codeword sets and representations of the integers,” IEEE Trans. Inf. Theory 21, 194–203 (1975).
    [CrossRef]
  18. A. Apostolico, A. S. Fraenkel, “Robust transmission of unbounded strings using Fibonacci representations,” IEEE Trans. Inf. Theory 33, 238–245 (1987).
    [CrossRef]
  19. T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116, 31–35 (1995).
    [CrossRef]
  20. E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
    [CrossRef]
  21. D. Ambrosi, D. Paoletti, G. Schirripa Spagnalo, “Study of free-convective onset on a horizontal wire using speckle pattern interferometry,” Int. J. Heat Mass Transfer 46, 4145–4155 (2003).
    [CrossRef]

2003 (2)

V. D. Madjarova, H. Kadono, S. Toyooka, “Dynamic electronic speckle pattern interferometry (DESPI) phase analysis with temporal Hilbert transform,” Opt. Express 11, 617–623 (2003), www.opticsexpress.org .
[CrossRef] [PubMed]

D. Ambrosi, D. Paoletti, G. Schirripa Spagnalo, “Study of free-convective onset on a horizontal wire using speckle pattern interferometry,” Int. J. Heat Mass Transfer 46, 4145–4155 (2003).
[CrossRef]

2002 (3)

E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
[CrossRef]

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Sinusoidal least-squares fitting for temporal fringe pattern analysis,” J. Mod. Opt. 49, 2257–2266 (2002).
[CrossRef]

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Synchronous detection techniques for temporal fringe pattern analysis,” Opt. Commun. 204, 75–81 (2002).
[CrossRef]

2000 (2)

1998 (1)

K. M. Hung, T. Yamada, “Phase unwrapping by regions using least squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

1996 (1)

1995 (3)

J. L. Marroquin, M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995).
[CrossRef]

T. W. Ng, “Carrier-modulated object step-loading method of automated analysis in digital speckle shearing interferometry,” J. Mod. Opt. 42, 2109–2118 (1995).
[CrossRef]

T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116, 31–35 (1995).
[CrossRef]

1994 (1)

T. W. Ng, F. S. Chau, “Automated analysis in digital speckle shearing interferometry using an object step-loading method,” Opt. Commun. 108, 214–218 (1994).
[CrossRef]

1993 (1)

1987 (2)

D. C. Ghiglia, G. A. Mastin, L. A. Romero, “Cellular automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267–280 (1987).
[CrossRef]

A. Apostolico, A. S. Fraenkel, “Robust transmission of unbounded strings using Fibonacci representations,” IEEE Trans. Inf. Theory 33, 238–245 (1987).
[CrossRef]

1985 (1)

1983 (1)

1982 (1)

1975 (1)

P. Elias, “Universal codeword sets and representations of the integers,” IEEE Trans. Inf. Theory 21, 194–203 (1975).
[CrossRef]

1952 (1)

D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proc. IRE 9, 1098–1101 (1952).
[CrossRef]

Ambrosi, D.

D. Ambrosi, D. Paoletti, G. Schirripa Spagnalo, “Study of free-convective onset on a horizontal wire using speckle pattern interferometry,” Int. J. Heat Mass Transfer 46, 4145–4155 (2003).
[CrossRef]

Apostolico, A.

A. Apostolico, A. S. Fraenkel, “Robust transmission of unbounded strings using Fibonacci representations,” IEEE Trans. Inf. Theory 33, 238–245 (1987).
[CrossRef]

Astrakharchik-Farrimond, E.

E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
[CrossRef]

Barton, J. S.

Buckberry, C.

Carlsson, T. E.

Chau, F. S.

T. W. Ng, F. S. Chau, “Automated analysis in digital speckle shearing interferometry using an object step-loading method,” Opt. Commun. 108, 214–218 (1994).
[CrossRef]

Creath, K.

Elias, P.

P. Elias, “Universal codeword sets and representations of the integers,” IEEE Trans. Inf. Theory 21, 194–203 (1975).
[CrossRef]

Fraenkel, A. S.

A. Apostolico, A. S. Fraenkel, “Robust transmission of unbounded strings using Fibonacci representations,” IEEE Trans. Inf. Theory 33, 238–245 (1987).
[CrossRef]

Galizzi, G. E.

Ghiglia, D. C.

Gomez-Pedrero, J. A.

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Sinusoidal least-squares fitting for temporal fringe pattern analysis,” J. Mod. Opt. 49, 2257–2266 (2002).
[CrossRef]

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Synchronous detection techniques for temporal fringe pattern analysis,” Opt. Commun. 204, 75–81 (2002).
[CrossRef]

Huffman, D. A.

D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proc. IRE 9, 1098–1101 (1952).
[CrossRef]

Hung, K. M.

K. M. Hung, T. Yamada, “Phase unwrapping by regions using least squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

Huntley, J. M.

Ina, H.

Jones, J. D. C.

Kadono, H.

Kaufmann, G. H.

Kerr, D.

Kilpatrick, J. M.

Kobayashi, S.

Madjarova, V. D.

Marroquin, J. L.

Mastin, G. A.

Moore, A. J.

Morgan, S. P.

E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
[CrossRef]

Ng, T. W.

T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116, 31–35 (1995).
[CrossRef]

T. W. Ng, “Carrier-modulated object step-loading method of automated analysis in digital speckle shearing interferometry,” J. Mod. Opt. 42, 2109–2118 (1995).
[CrossRef]

T. W. Ng, F. S. Chau, “Automated analysis in digital speckle shearing interferometry using an object step-loading method,” Opt. Commun. 108, 214–218 (1994).
[CrossRef]

Paoletti, D.

D. Ambrosi, D. Paoletti, G. Schirripa Spagnalo, “Study of free-convective onset on a horizontal wire using speckle pattern interferometry,” Int. J. Heat Mass Transfer 46, 4145–4155 (2003).
[CrossRef]

Quiroga, J. A.

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Synchronous detection techniques for temporal fringe pattern analysis,” Opt. Commun. 204, 75–81 (2002).
[CrossRef]

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Sinusoidal least-squares fitting for temporal fringe pattern analysis,” J. Mod. Opt. 49, 2257–2266 (2002).
[CrossRef]

Reeves, M.

Rivera, M.

Robinson, D. W.

Romero, L. A.

Saldner, H.

Sawyer, N. B. E.

E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
[CrossRef]

Schirripa Spagnalo, G.

D. Ambrosi, D. Paoletti, G. Schirripa Spagnalo, “Study of free-convective onset on a horizontal wire using speckle pattern interferometry,” Int. J. Heat Mass Transfer 46, 4145–4155 (2003).
[CrossRef]

See, C. W.

E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
[CrossRef]

Shekunov, B. Y.

E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
[CrossRef]

Somekh, M. G.

E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
[CrossRef]

Takeda, M.

Toyooka, S.

Villa, J.

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Synchronous detection techniques for temporal fringe pattern analysis,” Opt. Commun. 204, 75–81 (2002).
[CrossRef]

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Sinusoidal least-squares fitting for temporal fringe pattern analysis,” J. Mod. Opt. 49, 2257–2266 (2002).
[CrossRef]

Wei, A.

Yamada, T.

K. M. Hung, T. Yamada, “Phase unwrapping by regions using least squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

York, P.

E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
[CrossRef]

Appl. Opt. (5)

Exp. Fluids (1)

E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002).
[CrossRef]

IEEE Trans. Inf. Theory (2)

P. Elias, “Universal codeword sets and representations of the integers,” IEEE Trans. Inf. Theory 21, 194–203 (1975).
[CrossRef]

A. Apostolico, A. S. Fraenkel, “Robust transmission of unbounded strings using Fibonacci representations,” IEEE Trans. Inf. Theory 33, 238–245 (1987).
[CrossRef]

Int. J. Heat Mass Transfer (1)

D. Ambrosi, D. Paoletti, G. Schirripa Spagnalo, “Study of free-convective onset on a horizontal wire using speckle pattern interferometry,” Int. J. Heat Mass Transfer 46, 4145–4155 (2003).
[CrossRef]

J. Mod. Opt. (2)

T. W. Ng, “Carrier-modulated object step-loading method of automated analysis in digital speckle shearing interferometry,” J. Mod. Opt. 42, 2109–2118 (1995).
[CrossRef]

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Sinusoidal least-squares fitting for temporal fringe pattern analysis,” J. Mod. Opt. 49, 2257–2266 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (3)

T. W. Ng, F. S. Chau, “Automated analysis in digital speckle shearing interferometry using an object step-loading method,” Opt. Commun. 108, 214–218 (1994).
[CrossRef]

J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Synchronous detection techniques for temporal fringe pattern analysis,” Opt. Commun. 204, 75–81 (2002).
[CrossRef]

T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116, 31–35 (1995).
[CrossRef]

Opt. Eng. (1)

K. M. Hung, T. Yamada, “Phase unwrapping by regions using least squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. IRE (1)

D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proc. IRE 9, 1098–1101 (1952).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Digital speckle interferometry image and (b) the intensity distribution from a single line of data plotted under temporal loading evolution.

Fig. 2
Fig. 2

Temporal intensity distributions from spatial points that are continuous (A), discontinuous (B), and possessing low modulation (C).

Fig. 3
Fig. 3

Difference value distribution of temporal intensity distribution A in Fig. 2.

Fig. 4
Fig. 4

Schematic of the experimental DSPI setup.

Fig. 5
Fig. 5

(a) and (b) DSPI subtraction fringe patterns obtained with movement of the reference object for the point-loaded circular plate at two temporal instances and (c) and (d) with different temporal loads applied on the cantilever beam.

Fig. 6
Fig. 6

Compression ratios obtained for (a) the circular plate and (b) the cantilever digital speckle interferometry images under the Fibonacci and Elias gamma schemes for different peak-to-trough modulation cutoffs.

Tables (1)

Tables Icon

Table 1 First Eight Codes under the Elias Gamma and Fibonacci Schemes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i ( x , y , k ) = i B ( x , y ) + i M ( x , y ) × cos [ ϕ ( x , y ) + Δ ( x , y , k ) ] ,

Metrics