Abstract

We describe the experimental realization of an all-optical imaging system with an extended depth of field (DOF). The core of the system is a phase mask consisting of 16 Fresnel lenses (FLs) that are spatially multiplexed and mutually exclusive. Because each FL, in tandem with the primary lens, is designed to produce a sharp image for a specific object plane location, jointly the FLs achieve a wide DOF. However, the resultant image exhibits reduced resolution. The acquired image, onto which we did not apply any postprocessing, clearly is sharper than that acquired with a clear-aperture imaging system with the same pupil size.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), pp. 126–151.
  2. A. W. Lohmann, D. Mendlovic, Z. Zalevsky, “Digital method for measuring the focus error,” Appl. Opt. 36, 7204–7209 (1997).
    [CrossRef]
  3. M. Mino, Y. Okano, “Improvement in the OTF of a defocused optical system through the use of shaded apertures,” Appl. Opt. 10, 2219–2225 (1971).
    [CrossRef] [PubMed]
  4. J. O. Castaneda, R. Ramos, A. Noyola-Isgleas, “High focal depth by apodization and digital restoration,” Appl. Opt. 27, 2583–2586 (1988).
    [CrossRef]
  5. J. O. Castaneda, E. Tepichin, A. Diaz, “Arbitrary high focal depth with a quasioptimum real and positive transmittance apodizer,” Appl. Opt. 28, 2666–2669 (1989).
    [CrossRef]
  6. J. O. Castaneda, L. R. Berriel-Valdos, “Zone plate for arbitrary high focal depth,” Appl. Opt. 29, 994–997 (1990).
    [CrossRef]
  7. S. Sanyal, A. Ghosh, “High focal depth with quasi-bifocus birefringent lens,” Appl. Opt. 39, 2321–2325 (2000).
    [CrossRef]
  8. E. Peli, A. Lang, “Appearance of images through a multifocal intraocular lens,” J. Opt. Soc. Am. A 18, 302–309 (2001).
    [CrossRef]
  9. E. R. Dowski, W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
    [CrossRef] [PubMed]
  10. J. van der Gracht, E. R. Dowski, M. G. Taylor, D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919–921 (1996).
    [CrossRef] [PubMed]
  11. S. Bradburn, W. T. Cathey, E. R. Dowski, “Realizations of focus invariance in optical-digital systems, with wave-front coding,” Appl. Opt. 36, 9157–9166 (1997).
    [CrossRef]
  12. J. van der Gracht, E. R. Dowski, W. D. Cathey, J. P. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical Systems Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
    [CrossRef]
  13. W. Chi, N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875–877 (2001).
    [CrossRef]
  14. N. George, W. Chi, “Computational imaging with the logarithmic asphere: theory,” J. Opt. Soc. Am. A 20, 2260–2273 (2003).
    [CrossRef]
  15. J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, T. Torgersen, “Iris recognition with enhanced depth-of-field image acquisition,” in Visual Information Processing XIII, Z. Rahman, R. A. Schowengerdt, S. E. Reichenbach, eds., Proc. SPIE5438, 120–129 (2004).
    [CrossRef]
  16. E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A 5, S164–S169 (2003).
    [CrossRef]
  17. E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, G. C. Righini, A. Consortini, eds., Proc. SPIE4829, 221–222 (2002).
  18. S. Haykin, Adaptive Filter Theory, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1991).
  19. H. H. Hopkins, “The use of diffraction-based criteria of image quality in automatic optical design,” Opt. Acta 13, 343–369 (1955).
  20. H. Bartlet, J. O. Castaneda, E. S. Enrique, “Misfocus tolerance seen by simple inspection of the ambiguity function,”Appl. Opt. 23, 2693–2696 (1984).
    [CrossRef]

2003 (2)

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A 5, S164–S169 (2003).
[CrossRef]

N. George, W. Chi, “Computational imaging with the logarithmic asphere: theory,” J. Opt. Soc. Am. A 20, 2260–2273 (2003).
[CrossRef]

2001 (2)

2000 (1)

1997 (2)

1996 (1)

1995 (1)

1990 (1)

1989 (1)

1988 (1)

1984 (1)

1971 (1)

1955 (1)

H. H. Hopkins, “The use of diffraction-based criteria of image quality in automatic optical design,” Opt. Acta 13, 343–369 (1955).

Bartlet, H.

Ben-Eliezer, E.

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A 5, S164–S169 (2003).
[CrossRef]

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, G. C. Righini, A. Consortini, eds., Proc. SPIE4829, 221–222 (2002).

Berriel-Valdos, L. R.

Bowen, J. P.

J. van der Gracht, E. R. Dowski, W. D. Cathey, J. P. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical Systems Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
[CrossRef]

Bradburn, S.

Castaneda, J. O.

Cathey, W. D.

J. van der Gracht, E. R. Dowski, W. D. Cathey, J. P. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical Systems Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
[CrossRef]

Cathey, W. T.

Chi, W.

Deaver, D. M.

Diaz, A.

Dowski, E. R.

Enrique, E. S.

George, N.

Ghosh, A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), pp. 126–151.

Haykin, S.

S. Haykin, Adaptive Filter Theory, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1991).

Hopkins, H. H.

H. H. Hopkins, “The use of diffraction-based criteria of image quality in automatic optical design,” Opt. Acta 13, 343–369 (1955).

Konforti, N.

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A 5, S164–S169 (2003).
[CrossRef]

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, G. C. Righini, A. Consortini, eds., Proc. SPIE4829, 221–222 (2002).

Lang, A.

Lohmann, A. W.

Marom, E.

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A 5, S164–S169 (2003).
[CrossRef]

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, G. C. Righini, A. Consortini, eds., Proc. SPIE4829, 221–222 (2002).

Mendlovic, D.

Mino, M.

Narayanswamy, R.

J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, T. Torgersen, “Iris recognition with enhanced depth-of-field image acquisition,” in Visual Information Processing XIII, Z. Rahman, R. A. Schowengerdt, S. E. Reichenbach, eds., Proc. SPIE5438, 120–129 (2004).
[CrossRef]

Noyola-Isgleas, A.

Okano, Y.

Pauca, V. P.

J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, T. Torgersen, “Iris recognition with enhanced depth-of-field image acquisition,” in Visual Information Processing XIII, Z. Rahman, R. A. Schowengerdt, S. E. Reichenbach, eds., Proc. SPIE5438, 120–129 (2004).
[CrossRef]

Peli, E.

Plemmons, R.

J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, T. Torgersen, “Iris recognition with enhanced depth-of-field image acquisition,” in Visual Information Processing XIII, Z. Rahman, R. A. Schowengerdt, S. E. Reichenbach, eds., Proc. SPIE5438, 120–129 (2004).
[CrossRef]

Prasad, S.

J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, T. Torgersen, “Iris recognition with enhanced depth-of-field image acquisition,” in Visual Information Processing XIII, Z. Rahman, R. A. Schowengerdt, S. E. Reichenbach, eds., Proc. SPIE5438, 120–129 (2004).
[CrossRef]

Ramos, R.

Sanyal, S.

Setty, H.

J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, T. Torgersen, “Iris recognition with enhanced depth-of-field image acquisition,” in Visual Information Processing XIII, Z. Rahman, R. A. Schowengerdt, S. E. Reichenbach, eds., Proc. SPIE5438, 120–129 (2004).
[CrossRef]

Taylor, M. G.

Tepichin, E.

Torgersen, T.

J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, T. Torgersen, “Iris recognition with enhanced depth-of-field image acquisition,” in Visual Information Processing XIII, Z. Rahman, R. A. Schowengerdt, S. E. Reichenbach, eds., Proc. SPIE5438, 120–129 (2004).
[CrossRef]

van der Gracht, J.

J. van der Gracht, E. R. Dowski, M. G. Taylor, D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919–921 (1996).
[CrossRef] [PubMed]

J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, T. Torgersen, “Iris recognition with enhanced depth-of-field image acquisition,” in Visual Information Processing XIII, Z. Rahman, R. A. Schowengerdt, S. E. Reichenbach, eds., Proc. SPIE5438, 120–129 (2004).
[CrossRef]

J. van der Gracht, E. R. Dowski, W. D. Cathey, J. P. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical Systems Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
[CrossRef]

Zalevsky, Z.

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A 5, S164–S169 (2003).
[CrossRef]

A. W. Lohmann, D. Mendlovic, Z. Zalevsky, “Digital method for measuring the focus error,” Appl. Opt. 36, 7204–7209 (1997).
[CrossRef]

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, G. C. Righini, A. Consortini, eds., Proc. SPIE4829, 221–222 (2002).

Appl. Opt. (9)

J. Opt. A (1)

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A 5, S164–S169 (2003).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Acta (1)

H. H. Hopkins, “The use of diffraction-based criteria of image quality in automatic optical design,” Opt. Acta 13, 343–369 (1955).

Opt. Lett. (2)

Other (5)

J. van der Gracht, E. R. Dowski, W. D. Cathey, J. P. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical Systems Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), pp. 126–151.

J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, T. Torgersen, “Iris recognition with enhanced depth-of-field image acquisition,” in Visual Information Processing XIII, Z. Rahman, R. A. Schowengerdt, S. E. Reichenbach, eds., Proc. SPIE5438, 120–129 (2004).
[CrossRef]

E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti, “All-optical extended depth of field imaging system,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, G. C. Righini, A. Consortini, eds., Proc. SPIE4829, 221–222 (2002).

S. Haykin, Adaptive Filter Theory, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Typical sampling scheme of a specific FL. Allocations of sampled data within each superpixel are random.

Fig. 3
Fig. 3

Left, calculated MTF cross sections for the clear-pupil imaging system, the original CPM, and the modified CPM (a) in focus, (b) with ψ = ±7.5, and (c) ψ = ±15. Right, OTF phases of original and modified CPM for same conditions.

Fig. 4
Fig. 4

The π/2 binary mask used for (a) the original unmodified CPM and (b) the modified CPM used in these experiments. One can see the central round region as well as the rings of the FLs in (b), which are not visually apparent in the unmodified CPM binary mask (a).

Fig. 5
Fig. 5

Output images of the spoke target for the in-focus condition. The upper image was obtained with a clear aperture; the lower one was acquired by use of the modified CPM. The small defects in (a) are due to the spoke target.

Fig. 6
Fig. 6

Output images of the spoke target for misfocus condition ψ = 15. The upper image was obtained with a clear aperture; the lower one was acquired by use of the modified CPM. The images for ψ = −15 are similar.

Tables (1)

Tables Icon

Table 1 Misfocus Conditions under Consideration in This Papera

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ψ = π L 2 4 λ ( 1 d obj + 1 d image 1 f ) .
E 2 = Δ ψ Ω | h ( x , y ; ψ ) h D ( x , y ) | 2 d x d y d ψ ,
E 2 = Δ ψ Ω f | M ( u , υ ) G ( u , υ ; ψ ) H D ( u , υ ) | 2 d u d υ d ψ ,
G ( u , υ ; ψ ) = exp [ j ψ ( u 2 + υ 2 ) ] ,
M ( u , υ ) = M r ( u , υ ) + j M i ( u , υ ) ,
E 2 M r = Δ ψ Ω f [ G ( M G H D ) * + G * ( M G H D ) ] d u d υ d ψ ,
E 2 M i = Δ ψ Ω f [ j G ( M G H D ) * j G * ( M G H D ) ] d u d υ d ψ .
E 2 M = 2 Δ ψ Ω f G * ( M G H D ) d u d υ d ψ ;
E 2 M * = 2 Δ ψ Ω f G ( M G H D ) * d u d υ d ψ .
Δ ψ ( M | G | 2 H D G * ) d ψ = Δ ψ ( M H D G * ) d ψ = 0 .
( ψ max ψ min ) M ( u , υ ) = H D Δ ψ G * d ψ ,
M ( u , υ ) = ψ min ψ max exp [ j ψ ( u 2 + υ 2 ) ] d ψ ψ max ψ min H D ( u , υ ) .
M ( u , υ ) = exp [ j ( ψ max + ψ min ) 2 ( u 2 + υ 2 ) ] × sinc [ ( ψ max ψ min ) 2 π ( u 2 + υ 2 ) ] H D ( u , υ ) .
M ( u , υ ) Δ ψ ( ψ max ψ min ) k = 0 15 G k * ,
ψ k = 15 + 2 k , k { 0 , 1 , , 15 } ,
P k ( u , υ ) = { M k ( u , υ ) exp ( j ψ k ) u 2 + υ 2 1 , k { 0 15 } 0 else ,
ψ k = { ψ k ( u 2 + υ 2 ) ψ k > 0 ψ k ( u 2 + υ 2 ) + π / 3 ψ k < 0 ,
f co inc = L / λ d image ,

Metrics