Abstract

The fabrication and experimental investigation of a miniature optical fiber pressure sensor for biomedical and industrial applications are described. The sensor measures only 125 µm in diameter. The essential element is a thin polymer diaphragm that is positioned inside the hollow end of an optical fiber. The cavity at the fiber end is made by a simple and effective micromachining process based on wet etching in diluted HF acid. Thus a Fabry–Perot interferometer is formed between the inner fiber–cavity interface and the diaphragm. The fabrication technique is described in detail. Different sensor prototypes were fabricated upon 125 µm-diameter optical fiber that demonstrated pressure ranges from 0 to 40 and from 0 to 1200 kPa. A resolution of less than 10 Pa was demonstrated in practice. The fabrication technique presented facilitates production of simple and low-cost disposable pressure sensors by use of materials with that ensure the required biocompatibility.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ji, S. T. Cho, Y. Zhang, K. Najafi, K. D. Wise, “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. Electron Devices 39, 2260–2266 (1992).
    [CrossRef]
  2. S. Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas, “A solid-state pressure-sensing microsystem for biomedical applications,” Sensors Actuators A 62, 551–555 (1997).
    [CrossRef]
  3. Y. S. Lee, K. D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity,” IEEE Trans. Electron Devices ED-29, 42–48 (1982).
    [CrossRef]
  4. A. Druzhinin, E. Lavitska, I. Maryamova, “Medical pressure sensors on the basis of silicon microcrystals and SOI layers,” Sensors Actuators B 58, 415–419 (1999).
    [CrossRef]
  5. N. Wu, M. Hu, J. Shen, Q. Ma, “A miniature piezoresistive catheter pressure sensor,” Sensors Actuators A 35, 197–201 (1993).
    [CrossRef]
  6. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
    [CrossRef] [PubMed]
  7. G. He, M. T. Wlodarczyk, “Catheter-type disposable fiber optic pressure transducer,” Proceedings of the 9th Optical Fiber Sensors Conference, (Associazione Elettrotecnica ed Elettronica Italiana, Florence, 1993), pp. 463–466.
  8. Y. J. Rao, D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18, 24, 2153–2155 (1993).
    [CrossRef]
  9. M. A. Chan, S. D. Collins, R. L. Smith, “A micromachined pressure sensor with fiber-optic interferometric readout,” Sensors Actuators A 43, 196–201 (1994).
    [CrossRef]
  10. C. Belleville, G. Duplain, “Fabry–Perot sensing device for measuring a physical parameter,” U.S. patent5,392,117 (21February1995).
  11. N. Narendran, M. A. Corbo, W. Smith, “Fiber optic pressure sensor for biomedical applications,” ASAIO J. 42, M500–M506 (1996).
    [CrossRef] [PubMed]
  12. O. Tohyama, M. Kohashi, M. Sugihara, H. Itoh, “A fiberoptic pressure microsensor for biomedical applications,” Sensors Actuators A 66, 150–154 (1998).
    [CrossRef]
  13. K. Johannesen, “Optical pressure sensor,” international patentWO 9,945,352 (10September1999).
  14. M. I. Belovolov, M. M. Bubnov, E. M. Dianov, S. L. Semenov, “Fiber-optic pressure sensor, variants and method for producing a resilient membrane,” international patentWO 9,966,299 (23December1999).
  15. T. Katsumata, Y. Haga, K. Minami, M. Esashi, “Micromachined 125 µm diameter ultra miniature fiber-optic pressure sensor for catheter,” Trans. Inst. Electron. Commun. Eng. Jpn. 120-E2, 58–63 (2000).
  16. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, “A Novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13, 993–995 (2001).
    [CrossRef]
  17. J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
    [CrossRef] [PubMed]
  18. C. E. Lee, H. F. Taylor, A. M. Markus, E. Udd, “Optical-fiber Fabry–Perot embedded sensor,” Opt. Lett. 14, 1225–1227 (1989).
    [CrossRef] [PubMed]
  19. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1621 (1982).
    [CrossRef]
  20. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
    [CrossRef]
  21. O. Köysal, D. Önal, S. Özder, F. Necati Ecevit, “Thickness measurement of dielectric film by wavelength scanning method,” Opt. Commun. 205, 1–6 (2002).
    [CrossRef]
  22. T. Li, A. Wang, K. Murphy, R. Claus, “White-light scanning fiber Michelson interferometer for absolute position-distance measurement,” Opt. Lett. 20, 785–787 (1995).
    [CrossRef] [PubMed]
  23. G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked in-terferometric pressure sensor,” Rev. Sci. Instrum. 89, 1655–1659 (1987).
    [CrossRef]
  24. C. E. Lee, H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
    [CrossRef]
  25. R. Sadkowski, C. E. Lee, H. F. Taylor, “Multiplexed interferometric fiber-optic sensors with digital signal processing,” Appl. Opt. 34, 5861–5866 (1995).
    [CrossRef] [PubMed]
  26. A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fibre optic Fabry–Perot sensors,” Opt. Commun. 133, 62–66 (1997).
    [CrossRef]
  27. J. Potter, A. Ezbiri, R. P. Tatam, “A broad band signal processing technique for miniature low-finesse Fabry–Perot interferometric sensors,” Opt. Commun. 140, 11–14 (1997).
    [CrossRef]
  28. G. N. De Brabander, G. Beheim, J. T. Boyd, “Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation,” Appl. Opt. 37, 3264–3267 (1998).
    [CrossRef]
  29. M. Schmidt, N. Fürstenau, “Fiber-optic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999).
    [CrossRef]
  30. T. Liu, G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
    [CrossRef]
  31. P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved coupling between laser diode and single-mode fibre tipped with a chemically etched self-centered diffracting element,” Electron. Lett. 17, 400–402 (1981).
    [CrossRef]
  32. Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000).
    [CrossRef]
  33. Ericsson FSU 925 PM-A fusion splicer user's manual, www.ericsson.com .
  34. Product list (Songwon Industrial Company, Ltd., South Korea, 2002), http://www.songwonind.com/publication/swpdt.pdf .
  35. C. Stropnik, L. Germic, B. Zerjal, “Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion,” J. Appl. Polym. Sci. 61, 1821–1830 (1996).
    [CrossRef]

2002 (1)

O. Köysal, D. Önal, S. Özder, F. Necati Ecevit, “Thickness measurement of dielectric film by wavelength scanning method,” Opt. Commun. 205, 1–6 (2002).
[CrossRef]

2001 (1)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, “A Novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13, 993–995 (2001).
[CrossRef]

2000 (3)

T. Katsumata, Y. Haga, K. Minami, M. Esashi, “Micromachined 125 µm diameter ultra miniature fiber-optic pressure sensor for catheter,” Trans. Inst. Electron. Commun. Eng. Jpn. 120-E2, 58–63 (2000).

T. Liu, G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
[CrossRef]

Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000).
[CrossRef]

1999 (2)

M. Schmidt, N. Fürstenau, “Fiber-optic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999).
[CrossRef]

A. Druzhinin, E. Lavitska, I. Maryamova, “Medical pressure sensors on the basis of silicon microcrystals and SOI layers,” Sensors Actuators B 58, 415–419 (1999).
[CrossRef]

1998 (2)

O. Tohyama, M. Kohashi, M. Sugihara, H. Itoh, “A fiberoptic pressure microsensor for biomedical applications,” Sensors Actuators A 66, 150–154 (1998).
[CrossRef]

G. N. De Brabander, G. Beheim, J. T. Boyd, “Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation,” Appl. Opt. 37, 3264–3267 (1998).
[CrossRef]

1997 (3)

A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fibre optic Fabry–Perot sensors,” Opt. Commun. 133, 62–66 (1997).
[CrossRef]

J. Potter, A. Ezbiri, R. P. Tatam, “A broad band signal processing technique for miniature low-finesse Fabry–Perot interferometric sensors,” Opt. Commun. 140, 11–14 (1997).
[CrossRef]

S. Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas, “A solid-state pressure-sensing microsystem for biomedical applications,” Sensors Actuators A 62, 551–555 (1997).
[CrossRef]

1996 (2)

N. Narendran, M. A. Corbo, W. Smith, “Fiber optic pressure sensor for biomedical applications,” ASAIO J. 42, M500–M506 (1996).
[CrossRef] [PubMed]

C. Stropnik, L. Germic, B. Zerjal, “Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion,” J. Appl. Polym. Sci. 61, 1821–1830 (1996).
[CrossRef]

1995 (3)

1994 (1)

M. A. Chan, S. D. Collins, R. L. Smith, “A micromachined pressure sensor with fiber-optic interferometric readout,” Sensors Actuators A 43, 196–201 (1994).
[CrossRef]

1993 (2)

Y. J. Rao, D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18, 24, 2153–2155 (1993).
[CrossRef]

N. Wu, M. Hu, J. Shen, Q. Ma, “A miniature piezoresistive catheter pressure sensor,” Sensors Actuators A 35, 197–201 (1993).
[CrossRef]

1992 (2)

J. Ji, S. T. Cho, Y. Zhang, K. Najafi, K. D. Wise, “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. Electron Devices 39, 2260–2266 (1992).
[CrossRef]

J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
[CrossRef] [PubMed]

1991 (2)

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

1989 (1)

1987 (1)

G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked in-terferometric pressure sensor,” Rev. Sci. Instrum. 89, 1655–1659 (1987).
[CrossRef]

1982 (2)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1621 (1982).
[CrossRef]

Y. S. Lee, K. D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity,” IEEE Trans. Electron Devices ED-29, 42–48 (1982).
[CrossRef]

1981 (1)

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved coupling between laser diode and single-mode fibre tipped with a chemically etched self-centered diffracting element,” Electron. Lett. 17, 400–402 (1981).
[CrossRef]

Abeysinghe, D. C.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, “A Novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13, 993–995 (2001).
[CrossRef]

Afromowitz, M. A.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

Arditty, H. J.

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved coupling between laser diode and single-mode fibre tipped with a chemically etched self-centered diffracting element,” Electron. Lett. 17, 400–402 (1981).
[CrossRef]

Bechara, J.

Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000).
[CrossRef]

Beheim, G.

Belleville, C.

C. Belleville, G. Duplain, “Fabry–Perot sensing device for measuring a physical parameter,” U.S. patent5,392,117 (21February1995).

Belovolov, M. I.

M. I. Belovolov, M. M. Bubnov, E. M. Dianov, S. L. Semenov, “Fiber-optic pressure sensor, variants and method for producing a resilient membrane,” international patentWO 9,966,299 (23December1999).

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Boyd, J. T.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, “A Novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13, 993–995 (2001).
[CrossRef]

G. N. De Brabander, G. Beheim, J. T. Boyd, “Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation,” Appl. Opt. 37, 3264–3267 (1998).
[CrossRef]

Bubnov, M. M.

M. I. Belovolov, M. M. Bubnov, E. M. Dianov, S. L. Semenov, “Fiber-optic pressure sensor, variants and method for producing a resilient membrane,” international patentWO 9,966,299 (23December1999).

Chan, M. A.

M. A. Chan, S. D. Collins, R. L. Smith, “A micromachined pressure sensor with fiber-optic interferometric readout,” Sensors Actuators A 43, 196–201 (1994).
[CrossRef]

Charles, J. P.

Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000).
[CrossRef]

Chatzandroulis, S.

S. Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas, “A solid-state pressure-sensing microsystem for biomedical applications,” Sensors Actuators A 62, 551–555 (1997).
[CrossRef]

Cho, S. T.

J. Ji, S. T. Cho, Y. Zhang, K. Najafi, K. D. Wise, “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. Electron Devices 39, 2260–2266 (1992).
[CrossRef]

Claus, R.

Collins, S. D.

M. A. Chan, S. D. Collins, R. L. Smith, “A micromachined pressure sensor with fiber-optic interferometric readout,” Sensors Actuators A 43, 196–201 (1994).
[CrossRef]

Corbo, M. A.

N. Narendran, M. A. Corbo, W. Smith, “Fiber optic pressure sensor for biomedical applications,” ASAIO J. 42, M500–M506 (1996).
[CrossRef] [PubMed]

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, “A Novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13, 993–995 (2001).
[CrossRef]

De Brabander, G. N.

Dianov, E. M.

M. I. Belovolov, M. M. Bubnov, E. M. Dianov, S. L. Semenov, “Fiber-optic pressure sensor, variants and method for producing a resilient membrane,” international patentWO 9,966,299 (23December1999).

Druzhinin, A.

A. Druzhinin, E. Lavitska, I. Maryamova, “Medical pressure sensors on the basis of silicon microcrystals and SOI layers,” Sensors Actuators B 58, 415–419 (1999).
[CrossRef]

Duplain, G.

C. Belleville, G. Duplain, “Fabry–Perot sensing device for measuring a physical parameter,” U.S. patent5,392,117 (21February1995).

Esashi, M.

T. Katsumata, Y. Haga, K. Minami, M. Esashi, “Micromachined 125 µm diameter ultra miniature fiber-optic pressure sensor for catheter,” Trans. Inst. Electron. Commun. Eng. Jpn. 120-E2, 58–63 (2000).

Ezbiri, A.

A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fibre optic Fabry–Perot sensors,” Opt. Commun. 133, 62–66 (1997).
[CrossRef]

J. Potter, A. Ezbiri, R. P. Tatam, “A broad band signal processing technique for miniature low-finesse Fabry–Perot interferometric sensors,” Opt. Commun. 140, 11–14 (1997).
[CrossRef]

Fernando, G. F.

T. Liu, G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
[CrossRef]

Friebele, E. J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Fritsch, K.

G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked in-terferometric pressure sensor,” Rev. Sci. Instrum. 89, 1655–1659 (1987).
[CrossRef]

Fürstenau, N.

Germic, L.

C. Stropnik, L. Germic, B. Zerjal, “Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion,” J. Appl. Polym. Sci. 61, 1821–1830 (1996).
[CrossRef]

Goustouridis, D.

S. Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas, “A solid-state pressure-sensing microsystem for biomedical applications,” Sensors Actuators A 62, 551–555 (1997).
[CrossRef]

Haga, Y.

T. Katsumata, Y. Haga, K. Minami, M. Esashi, “Micromachined 125 µm diameter ultra miniature fiber-optic pressure sensor for catheter,” Trans. Inst. Electron. Commun. Eng. Jpn. 120-E2, 58–63 (2000).

Hartl, J. C.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

He, G.

G. He, M. T. Wlodarczyk, “Catheter-type disposable fiber optic pressure transducer,” Proceedings of the 9th Optical Fiber Sensors Conference, (Associazione Elettrotecnica ed Elettronica Italiana, Florence, 1993), pp. 463–466.

Hu, M.

N. Wu, M. Hu, J. Shen, Q. Ma, “A miniature piezoresistive catheter pressure sensor,” Sensors Actuators A 35, 197–201 (1993).
[CrossRef]

Itoh, H.

O. Tohyama, M. Kohashi, M. Sugihara, H. Itoh, “A fiberoptic pressure microsensor for biomedical applications,” Sensors Actuators A 66, 150–154 (1998).
[CrossRef]

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1621 (1982).
[CrossRef]

Jackson, D. A.

Y. J. Rao, D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18, 24, 2153–2155 (1993).
[CrossRef]

J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
[CrossRef] [PubMed]

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, “A Novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13, 993–995 (2001).
[CrossRef]

Ji, J.

J. Ji, S. T. Cho, Y. Zhang, K. Najafi, K. D. Wise, “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. Electron Devices 39, 2260–2266 (1992).
[CrossRef]

Johannesen, K.

K. Johannesen, “Optical pressure sensor,” international patentWO 9,945,352 (10September1999).

Jones, R. T.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Katsumata, T.

T. Katsumata, Y. Haga, K. Minami, M. Esashi, “Micromachined 125 µm diameter ultra miniature fiber-optic pressure sensor for catheter,” Trans. Inst. Electron. Commun. Eng. Jpn. 120-E2, 58–63 (2000).

Kayoun, P.

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved coupling between laser diode and single-mode fibre tipped with a chemically etched self-centered diffracting element,” Electron. Lett. 17, 400–402 (1981).
[CrossRef]

Kersey, A. D.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Khoury, A.

Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000).
[CrossRef]

Kohashi, M.

O. Tohyama, M. Kohashi, M. Sugihara, H. Itoh, “A fiberoptic pressure microsensor for biomedical applications,” Sensors Actuators A 66, 150–154 (1998).
[CrossRef]

Köysal, O.

O. Köysal, D. Önal, S. Özder, F. Necati Ecevit, “Thickness measurement of dielectric film by wavelength scanning method,” Opt. Commun. 205, 1–6 (2002).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1621 (1982).
[CrossRef]

Lavitska, E.

A. Druzhinin, E. Lavitska, I. Maryamova, “Medical pressure sensors on the basis of silicon microcrystals and SOI layers,” Sensors Actuators B 58, 415–419 (1999).
[CrossRef]

Lee, C. E.

Lee, Y. S.

Y. S. Lee, K. D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity,” IEEE Trans. Electron Devices ED-29, 42–48 (1982).
[CrossRef]

Leite, A. P.

Li, T.

Liu, T.

T. Liu, G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
[CrossRef]

Llinaress, C.

Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000).
[CrossRef]

Ma, Q.

N. Wu, M. Hu, J. Shen, Q. Ma, “A miniature piezoresistive catheter pressure sensor,” Sensors Actuators A 35, 197–201 (1993).
[CrossRef]

Markus, A. M.

Maryamova, I.

A. Druzhinin, E. Lavitska, I. Maryamova, “Medical pressure sensors on the basis of silicon microcrystals and SOI layers,” Sensors Actuators B 58, 415–419 (1999).
[CrossRef]

Minami, K.

T. Katsumata, Y. Haga, K. Minami, M. Esashi, “Micromachined 125 µm diameter ultra miniature fiber-optic pressure sensor for catheter,” Trans. Inst. Electron. Commun. Eng. Jpn. 120-E2, 58–63 (2000).

Mitchell, G. L.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

Murphy, K.

Najafi, K.

J. Ji, S. T. Cho, Y. Zhang, K. Najafi, K. D. Wise, “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. Electron Devices 39, 2260–2266 (1992).
[CrossRef]

Narendran, N.

N. Narendran, M. A. Corbo, W. Smith, “Fiber optic pressure sensor for biomedical applications,” ASAIO J. 42, M500–M506 (1996).
[CrossRef] [PubMed]

Necati Ecevit, F.

O. Köysal, D. Önal, S. Özder, F. Necati Ecevit, “Thickness measurement of dielectric film by wavelength scanning method,” Opt. Commun. 205, 1–6 (2002).
[CrossRef]

Normand, P.

S. Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas, “A solid-state pressure-sensing microsystem for biomedical applications,” Sensors Actuators A 62, 551–555 (1997).
[CrossRef]

Önal, D.

O. Köysal, D. Önal, S. Özder, F. Necati Ecevit, “Thickness measurement of dielectric film by wavelength scanning method,” Opt. Commun. 205, 1–6 (2002).
[CrossRef]

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1621 (1982).
[CrossRef]

Özder, S.

O. Köysal, D. Önal, S. Özder, F. Necati Ecevit, “Thickness measurement of dielectric film by wavelength scanning method,” Opt. Commun. 205, 1–6 (2002).
[CrossRef]

Papuchon, M.

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved coupling between laser diode and single-mode fibre tipped with a chemically etched self-centered diffracting element,” Electron. Lett. 17, 400–402 (1981).
[CrossRef]

Poorman, R. N.

G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked in-terferometric pressure sensor,” Rev. Sci. Instrum. 89, 1655–1659 (1987).
[CrossRef]

Potter, J.

J. Potter, A. Ezbiri, R. P. Tatam, “A broad band signal processing technique for miniature low-finesse Fabry–Perot interferometric sensors,” Opt. Commun. 140, 11–14 (1997).
[CrossRef]

Puech, C.

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved coupling between laser diode and single-mode fibre tipped with a chemically etched self-centered diffracting element,” Electron. Lett. 17, 400–402 (1981).
[CrossRef]

Putnam, M. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Rao, Y. J.

Y. J. Rao, D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18, 24, 2153–2155 (1993).
[CrossRef]

Saaski, E.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

Sadkowski, R.

Santos, J. L.

Schmidt, M.

Semenov, S. L.

M. I. Belovolov, M. M. Bubnov, E. M. Dianov, S. L. Semenov, “Fiber-optic pressure sensor, variants and method for producing a resilient membrane,” international patentWO 9,966,299 (23December1999).

Shen, J.

N. Wu, M. Hu, J. Shen, Q. Ma, “A miniature piezoresistive catheter pressure sensor,” Sensors Actuators A 35, 197–201 (1993).
[CrossRef]

Singh, H.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Sirkis, J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Smith, R. L.

M. A. Chan, S. D. Collins, R. L. Smith, “A micromachined pressure sensor with fiber-optic interferometric readout,” Sensors Actuators A 43, 196–201 (1994).
[CrossRef]

Smith, W.

N. Narendran, M. A. Corbo, W. Smith, “Fiber optic pressure sensor for biomedical applications,” ASAIO J. 42, M500–M506 (1996).
[CrossRef] [PubMed]

Stropnik, C.

C. Stropnik, L. Germic, B. Zerjal, “Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion,” J. Appl. Polym. Sci. 61, 1821–1830 (1996).
[CrossRef]

Sugihara, M.

O. Tohyama, M. Kohashi, M. Sugihara, H. Itoh, “A fiberoptic pressure microsensor for biomedical applications,” Sensors Actuators A 66, 150–154 (1998).
[CrossRef]

Tatam, R. P.

A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fibre optic Fabry–Perot sensors,” Opt. Commun. 133, 62–66 (1997).
[CrossRef]

J. Potter, A. Ezbiri, R. P. Tatam, “A broad band signal processing technique for miniature low-finesse Fabry–Perot interferometric sensors,” Opt. Commun. 140, 11–14 (1997).
[CrossRef]

Taylor, H. F.

Tohyama, O.

O. Tohyama, M. Kohashi, M. Sugihara, H. Itoh, “A fiberoptic pressure microsensor for biomedical applications,” Sensors Actuators A 66, 150–154 (1998).
[CrossRef]

Tsoukalas, D.

S. Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas, “A solid-state pressure-sensing microsystem for biomedical applications,” Sensors Actuators A 62, 551–555 (1997).
[CrossRef]

Udd, E.

Wang, A.

Wise, K. D.

J. Ji, S. T. Cho, Y. Zhang, K. Najafi, K. D. Wise, “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. Electron Devices 39, 2260–2266 (1992).
[CrossRef]

Y. S. Lee, K. D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity,” IEEE Trans. Electron Devices ED-29, 42–48 (1982).
[CrossRef]

Wlodarczyk, M. T.

G. He, M. T. Wlodarczyk, “Catheter-type disposable fiber optic pressure transducer,” Proceedings of the 9th Optical Fiber Sensors Conference, (Associazione Elettrotecnica ed Elettronica Italiana, Florence, 1993), pp. 463–466.

Wolthuis, R. A.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

Wu, N.

N. Wu, M. Hu, J. Shen, Q. Ma, “A miniature piezoresistive catheter pressure sensor,” Sensors Actuators A 35, 197–201 (1993).
[CrossRef]

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1621 (1982).
[CrossRef]

Zaatar, Y.

Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000).
[CrossRef]

Zaouk, D.

Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000).
[CrossRef]

Zerjal, B.

C. Stropnik, L. Germic, B. Zerjal, “Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion,” J. Appl. Polym. Sci. 61, 1821–1830 (1996).
[CrossRef]

Zhang, Y.

J. Ji, S. T. Cho, Y. Zhang, K. Najafi, K. D. Wise, “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. Electron Devices 39, 2260–2266 (1992).
[CrossRef]

Appl. Opt. (3)

ASAIO J. (1)

N. Narendran, M. A. Corbo, W. Smith, “Fiber optic pressure sensor for biomedical applications,” ASAIO J. 42, M500–M506 (1996).
[CrossRef] [PubMed]

Electron. Lett. (1)

P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved coupling between laser diode and single-mode fibre tipped with a chemically etched self-centered diffracting element,” Electron. Lett. 17, 400–402 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, “A Novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13, 993–995 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

IEEE Trans. Electron Devices (1)

Y. S. Lee, K. D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity,” IEEE Trans. Electron Devices ED-29, 42–48 (1982).
[CrossRef]

IEEE Trans. Electron Devices (1)

J. Ji, S. T. Cho, Y. Zhang, K. Najafi, K. D. Wise, “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. Electron Devices 39, 2260–2266 (1992).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1621 (1982).
[CrossRef]

J. Appl. Polym. Sci. (1)

C. Stropnik, L. Germic, B. Zerjal, “Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion,” J. Appl. Polym. Sci. 61, 1821–1830 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

J. Lightwave Technol. (1)

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

Mater. Sci. Eng. B (1)

Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000).
[CrossRef]

Opt. Commun. (1)

O. Köysal, D. Önal, S. Özder, F. Necati Ecevit, “Thickness measurement of dielectric film by wavelength scanning method,” Opt. Commun. 205, 1–6 (2002).
[CrossRef]

Opt. Commun. (2)

A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fibre optic Fabry–Perot sensors,” Opt. Commun. 133, 62–66 (1997).
[CrossRef]

J. Potter, A. Ezbiri, R. P. Tatam, “A broad band signal processing technique for miniature low-finesse Fabry–Perot interferometric sensors,” Opt. Commun. 140, 11–14 (1997).
[CrossRef]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

T. Liu, G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked in-terferometric pressure sensor,” Rev. Sci. Instrum. 89, 1655–1659 (1987).
[CrossRef]

Sensors Actuators A (2)

O. Tohyama, M. Kohashi, M. Sugihara, H. Itoh, “A fiberoptic pressure microsensor for biomedical applications,” Sensors Actuators A 66, 150–154 (1998).
[CrossRef]

N. Wu, M. Hu, J. Shen, Q. Ma, “A miniature piezoresistive catheter pressure sensor,” Sensors Actuators A 35, 197–201 (1993).
[CrossRef]

Sensors Actuators A (2)

M. A. Chan, S. D. Collins, R. L. Smith, “A micromachined pressure sensor with fiber-optic interferometric readout,” Sensors Actuators A 43, 196–201 (1994).
[CrossRef]

S. Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas, “A solid-state pressure-sensing microsystem for biomedical applications,” Sensors Actuators A 62, 551–555 (1997).
[CrossRef]

Sensors Actuators B (1)

A. Druzhinin, E. Lavitska, I. Maryamova, “Medical pressure sensors on the basis of silicon microcrystals and SOI layers,” Sensors Actuators B 58, 415–419 (1999).
[CrossRef]

Trans. Inst. Electron. Commun. Eng. Jpn. (1)

T. Katsumata, Y. Haga, K. Minami, M. Esashi, “Micromachined 125 µm diameter ultra miniature fiber-optic pressure sensor for catheter,” Trans. Inst. Electron. Commun. Eng. Jpn. 120-E2, 58–63 (2000).

Other (6)

Ericsson FSU 925 PM-A fusion splicer user's manual, www.ericsson.com .

Product list (Songwon Industrial Company, Ltd., South Korea, 2002), http://www.songwonind.com/publication/swpdt.pdf .

C. Belleville, G. Duplain, “Fabry–Perot sensing device for measuring a physical parameter,” U.S. patent5,392,117 (21February1995).

G. He, M. T. Wlodarczyk, “Catheter-type disposable fiber optic pressure transducer,” Proceedings of the 9th Optical Fiber Sensors Conference, (Associazione Elettrotecnica ed Elettronica Italiana, Florence, 1993), pp. 463–466.

K. Johannesen, “Optical pressure sensor,” international patentWO 9,945,352 (10September1999).

M. I. Belovolov, M. M. Bubnov, E. M. Dianov, S. L. Semenov, “Fiber-optic pressure sensor, variants and method for producing a resilient membrane,” international patentWO 9,966,299 (23December1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Miniature pressure sensor.

Fig. 2
Fig. 2

Short segment of a MM fiber spliced to the end of a SM fiber.

Fig. 3
Fig. 3

Fiber cleaving schemes: (a) cleaving SM fiber before splicing and (b) cleaving the spliced MM–SM fiber.

Fig. 4
Fig. 4

Profile of the MM optical fiber.

Fig. 5
Fig. 5

Schematic of the MM fiber etching control system. An optical power monitoring software on a PC, connected to a power-meter via a general-purpose interface bus (GPIB), was used for monitoring of the removal of the MM fiber's core.

Fig. 6
Fig. 6

Reflectivity of the SM–MM fiber versus time (T = 24 °C; HF acid concentration, 40%).

Fig. 7
Fig. 7

Electron microscope photograph of an etched cavity interior with an evidently step-shaped surface.

Fig. 8
Fig. 8

Schematic of the drying chamber.

Fig. 9
Fig. 9

Procedure for fabricating a diaphragm. DMF, dispersion-maintaining fiber; comp., compartment.

Fig. 10
Fig. 10

Enlarged photograph of an optical fiber sensor with a PU diaphragm.

Fig. 11
Fig. 11

Enlarged photograph of an optical fiber sensor with a PS diaphragm.

Fig. 12
Fig. 12

Schematic representation of the experimental arrangements for evaluation of pressure sensors by use of (a) spectral interrogation and (b) direct reflected optical power measurement.

Fig. 13
Fig. 13

Typical measured spectrum of reflected light under 1310-nm LED illumination.

Fig. 14
Fig. 14

Phase change versus pressure for three typical samples of thin-PU-diaphragm pressure sensors under 1550-nm laser diode illumination.

Fig. 15
Fig. 15

Practical demonstration of the pressure resolution of the measurement system.

Fig. 16
Fig. 16

Relative intensity versus pressure for three typical samples of thick-PU-diaphragm pressure sensors under 1550-nm laser diode illumination.

Fig. 17
Fig. 17

Relative intensity versus pressure response for a PS-diaphragm pressure sensor under 1550-nm laser diode illumination.

Fig. 18
Fig. 18

Relative intensity versus time (time scale, 20 ms/division) for a step change in pressure (40 kPa) for diaphragm 1 of Table 1. The rise time was 78 ms.

Fig. 19
Fig. 19

Relative intensity versus time (time scale, 5 ms_division) for a step change of pressure _40 kPa_ for diaphragm 3 of Table 1. The rise time was 6.7 ms.

Fig. 20
Fig. 20

Relative intensity versus time (time scale, 5 ms/division) for a step change of pressure (40 kPa) for diaphragm 4 of Table 1. The rise time was 2.7 ms.

Tables (1)

Tables Icon

Table 1 Practically Tested Polymers, Solvents, and Solvent Concentrationsa

Metrics