N. K. Mohan, P. K. Rastogi, “Recent developments in digital speckle pattern interferometry,” Opt. Lasers Eng. 40, 439–445 (2003).

[CrossRef]

C. A. Sciammarella, T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182–3193 (2003).

[CrossRef]

A. Federico, G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt. 42, 7066–7071 (2003).

[CrossRef]
[PubMed]

Y. Qin, J. Chen, H. Fan, “The study and application of a new filtering method on electronic speckle pattern interferometric fringes,” Opt. Lasers Eng. 39, 449–456 (2003).

[CrossRef]

G. H. Kaufmann, “Nondestructive testing with thermal waves using phase shifted temporal speckle pattern interferometry,” Opt. Eng. 42, 2010–2014 (2003).

[CrossRef]

Z. Wang, A. C. Bovik, “A universal quality index,” IEEE Signal Process Lett. 9, 81–84 (2002).

[CrossRef]

A. Federico, G. H. Kaufmann, “Evaluation of the continuous wavelet transform method for the phase measurement of electronic speckle pattern interferometry fringes,” Opt. Eng. 41, 3209–3216 (2002).

[CrossRef]

A. Federico, G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001).

[CrossRef]

J. A. Quiroga, J. Gómez-Pedrero, A. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51 (2001).

[CrossRef]

N. Alcalá Ochoa, F. M. Santoyo, C. P. López, B. Barrientos, “Multiplicative electronic speckle-pattern interferometry fringes,” Appl. Opt. 39, 5138–5141 (2000).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Proc. 9, 1522–1531 (2000).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proc. 9, 1532–1546 (2000).

[CrossRef]

Z. Wang, A. C. Bovik, “A universal quality index,” IEEE Signal Process Lett. 9, 81–84 (2002).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proc. 9, 1532–1546 (2000).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Proc. 9, 1522–1531 (2000).

[CrossRef]

Y. Qin, J. Chen, H. Fan, “The study and application of a new filtering method on electronic speckle pattern interferometric fringes,” Opt. Lasers Eng. 39, 449–456 (2003).

[CrossRef]

X. Colonna de Lega, “Continuous deformation measurement using dynamic phase-shifting and wavelet transform,” in Applied Optics and Optoelectronics 1996, K. T. V. Grattan, ed. (Institute of Physics Publishing, Bristol, UK, 1996), pp. 261–267.

C. de Boor, A Practical Guide to Splines (Springer-Verlag, Berlin, 1994).

Y. Qin, J. Chen, H. Fan, “The study and application of a new filtering method on electronic speckle pattern interferometric fringes,” Opt. Lasers Eng. 39, 449–456 (2003).

[CrossRef]

A. Federico, G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt. 42, 7066–7071 (2003).

[CrossRef]
[PubMed]

A. Federico, G. H. Kaufmann, “Evaluation of the continuous wavelet transform method for the phase measurement of electronic speckle pattern interferometry fringes,” Opt. Eng. 41, 3209–3216 (2002).

[CrossRef]

A. Federico, G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001).

[CrossRef]

J. A. Quiroga, J. Gómez-Pedrero, A. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51 (2001).

[CrossRef]

J. A. Quiroga, J. Gómez-Pedrero, A. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51 (2001).

[CrossRef]

J. M. Huntley, “Automated analysis of speckle interferograms,” in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, Chichester, UK, 2001), pp. 59–139.

A. Federico, G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt. 42, 7066–7071 (2003).

[CrossRef]
[PubMed]

G. H. Kaufmann, “Nondestructive testing with thermal waves using phase shifted temporal speckle pattern interferometry,” Opt. Eng. 42, 2010–2014 (2003).

[CrossRef]

A. Federico, G. H. Kaufmann, “Evaluation of the continuous wavelet transform method for the phase measurement of electronic speckle pattern interferometry fringes,” Opt. Eng. 41, 3209–3216 (2002).

[CrossRef]

A. Federico, G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001).

[CrossRef]

D. I. Farrant, G. H. Kaufmann, J. N. Petzing, J. R. Tyrer, B. F. Oreb, D. Kerr, “Measurement of transient deformations using dual-pulse addition ESPI,” Appl. Opt. 37, 7259–7267 (1998).

[CrossRef]

C. A. Sciammarella, T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182–3193 (2003).

[CrossRef]

O. J. Løkberg, “Recent developments in video speckle interferometry,” in Speckle Metrology, R. S. Sirohi, ed. (Marcel Dekker, New York, 1993), pp. 157–194.

N. K. Mohan, P. K. Rastogi, “Recent developments in digital speckle pattern interferometry,” Opt. Lasers Eng. 40, 439–445 (2003).

[CrossRef]

Y. Qin, J. Chen, H. Fan, “The study and application of a new filtering method on electronic speckle pattern interferometric fringes,” Opt. Lasers Eng. 39, 449–456 (2003).

[CrossRef]

J. A. Quiroga, J. Gómez-Pedrero, A. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51 (2001).

[CrossRef]

N. K. Mohan, P. K. Rastogi, “Recent developments in digital speckle pattern interferometry,” Opt. Lasers Eng. 40, 439–445 (2003).

[CrossRef]

C. A. Sciammarella, T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182–3193 (2003).

[CrossRef]

M. Unser, “Splines,” IEEE Signal Process Mag. 16, 22–38 (1999).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proc. 9, 1532–1546 (2000).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Proc. 9, 1522–1531 (2000).

[CrossRef]

Z. Wang, A. C. Bovik, “A universal quality index,” IEEE Signal Process Lett. 9, 81–84 (2002).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Proc. 9, 1522–1531 (2000).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proc. 9, 1532–1546 (2000).

[CrossRef]

A. Federico, G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt. 42, 7066–7071 (2003).

[CrossRef]
[PubMed]

N. Alcalá Ochoa, F. M. Santoyo, C. P. López, B. Barrientos, “Multiplicative electronic speckle-pattern interferometry fringes,” Appl. Opt. 39, 5138–5141 (2000).

[CrossRef]

D. I. Farrant, G. H. Kaufmann, J. N. Petzing, J. R. Tyrer, B. F. Oreb, D. Kerr, “Measurement of transient deformations using dual-pulse addition ESPI,” Appl. Opt. 37, 7259–7267 (1998).

[CrossRef]

Z. Wang, A. C. Bovik, “A universal quality index,” IEEE Signal Process Lett. 9, 81–84 (2002).

[CrossRef]

M. Unser, “Splines,” IEEE Signal Process Mag. 16, 22–38 (1999).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Proc. 9, 1522–1531 (2000).

[CrossRef]

S. G. Chang, B. Yu, M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proc. 9, 1532–1546 (2000).

[CrossRef]

J. A. Quiroga, J. Gómez-Pedrero, A. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51 (2001).

[CrossRef]

C. A. Sciammarella, T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182–3193 (2003).

[CrossRef]

A. Federico, G. H. Kaufmann, “Evaluation of the continuous wavelet transform method for the phase measurement of electronic speckle pattern interferometry fringes,” Opt. Eng. 41, 3209–3216 (2002).

[CrossRef]

A. Federico, G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001).

[CrossRef]

G. H. Kaufmann, “Nondestructive testing with thermal waves using phase shifted temporal speckle pattern interferometry,” Opt. Eng. 42, 2010–2014 (2003).

[CrossRef]

Y. Qin, J. Chen, H. Fan, “The study and application of a new filtering method on electronic speckle pattern interferometric fringes,” Opt. Lasers Eng. 39, 449–456 (2003).

[CrossRef]

N. K. Mohan, P. K. Rastogi, “Recent developments in digital speckle pattern interferometry,” Opt. Lasers Eng. 40, 439–445 (2003).

[CrossRef]

O. J. Løkberg, “Recent developments in video speckle interferometry,” in Speckle Metrology, R. S. Sirohi, ed. (Marcel Dekker, New York, 1993), pp. 157–194.

J. M. Huntley, “Automated analysis of speckle interferograms,” in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, Chichester, UK, 2001), pp. 59–139.

X. Colonna de Lega, “Continuous deformation measurement using dynamic phase-shifting and wavelet transform,” in Applied Optics and Optoelectronics 1996, K. T. V. Grattan, ed. (Institute of Physics Publishing, Bristol, UK, 1996), pp. 261–267.

C. de Boor, A Practical Guide to Splines (Springer-Verlag, Berlin, 1994).

C. de Boor, Department of Computer Sciences, University of Wisconsin-Madison, 1210 West Dayton Street, Madison, Wis. 53706-1685, “Calculation of the smoothing spline with weighted roughness measure.” This paper can be downloaded at the Web site http://www.cs.wisc.edu .