Abstract

The differential absorption lidar (DIAL) at the Institut für Meteorologie und Klimaforschung has been upgraded for precise ozone and aerosol studies in the entire troposphere and the lower stratosphere. Its excellent technical performance offers the opportunity to apply improved data processing. The existing inversion algorithm is extended to derive the optical coefficients from the backscatter profiles for three wavelengths. Correlating the correction terms of the DIAL equation and the ozone concentration yields the wavelength dependence of the backscatter and extinction coefficients of the aerosol. Under some conditions, in particular if homogeneous layers are present, the backscatter-to-extinction ratio and the reference value can also be retrieved. We find the solutions by applying evolutionary strategies. From the optical coefficients obtained in this way the ozone concentration can be calculated with substantially reduced error.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols

Zhien Wang, Hideaki Nakane, Huanling Hu, and Jun Zhou
Appl. Opt. 36(6) 1245-1252 (1997)

Algorithm improvement and validation of National Institute for Environmental Studies ozone differential absorption lidar at the Tsukuba Network for Detection of Stratospheric Change complementary station

Chan Bong Park, Hideaki Nakane, Nobuo Sugimoto, Ichiro Matsui, Yasuhiro Sasano, Yasumi Fujinuma, Izumi Ikeuchi, Jun-Ichi Kurokawa, and Noritaka Furuhashi
Appl. Opt. 45(15) 3561-3576 (2006)

Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements

Shiv R. Pal and Luc R. Bissonnette
Appl. Opt. 37(27) 6500-6510 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription