Abstract

A radiative transfer model for the coupled atmosphere–sea ice system is used to study the change in downward irradiance across the air–ice interface. Computations demonstrate that the downward solar irradiance can be significantly enhanced across the air–ice interface. The enhancement is mainly due to light in the ice that is scattered upward and then totally reflected by the air–ice interface. It depends primarily on the change in the index of refraction across this interface and the optical properties of the sea ice, but also on the direct solar and sky illumination of the interface.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface

Zhonghai Jin, Thomas P. Charlock, Ken Rutledge, Knut Stamnes, and Yingjian Wang
Appl. Opt. 45(28) 7443-7455 (2006)

Radiative transfer in the earth's atmosphere and ocean: influence of ocean waves

Gilbert N. Plass, George W. Kattawar, and John A. Guinn
Appl. Opt. 14(8) 1924-1936 (1975)

Laboratory studies of angle- and polarization-dependent light scattering in sea ice

D. Miller, M. S. Quinby-Hunt, and A. J. Hunt
Appl. Opt. 36(6) 1278-1288 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription