Abstract

Smart pixels permit rapid signal processing through the use of integrated photodetectors and processing electronics on a single semiconductor chip. Smart pixels with smart illumination can increase the dynamic range and functionality of smart pixels by employing optoelectronic feedback to control the illumination of a scene. This combination of smart pixels and optoelectronic feedback leads to many potential sensor applications, including normalized differential detection, which is modeled and demonstrated here.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE Quantum Electron. 29, 655–669 (1993).
    [CrossRef]
  2. M. Azadeh, W. R. Babbitt, R. B. Darling, “Smart pixels with smart illumination,” Opt. Lett. 23, 786–788 (1998).
    [CrossRef]
  3. W. R. Babbitt, M. Azadeh, R. B. Darling, “Smart pixels with smart illumination for memory applications,” in Advanced Optical Memories and Interfaces to Computer Storage, P. Mitkas, Z. U. Hasan, eds.,Proc. SPIE3468, 108–115 (1998).
    [CrossRef]
  4. M. Azadeh, R. B. Darling, W. R. Babbitt, “Characteristics of optoelectronic feedback for smart pixels with smart illumination,” IEEE J. Sel. Top. Quantum Electron. 5, 172–177 (1999).
    [CrossRef]
  5. M. Azadeh, R. B. Darling, W. R. Babbitt, “A model for optoelectronically interconnected smart pixel arrays,” J. Lightwave Technol. 18, 1437–1444 (2000).
    [CrossRef]
  6. M. Azadeh, R. B. Darling, “Smart pixel optical sensor based on positive optical feedback,” Opt. Lett. 28, 352–354 (2003).
    [CrossRef] [PubMed]
  7. T. Kurokawa, S. Matso, T. Nakahara, K. Tateno, Y. Ohiso, A. Wakatsuki, H. Tsuda, “Design approaches for VCSEL's and VCSEL-based smart pixels toward parallel optoelectronic processing systems,” Appl. Opt. 37, 194–204 (1998).
    [CrossRef]
  8. J. S. Kane, T. G. Kincaid, P. Hemmer, “Optical processing with feedback using smart-pixel spatial light modulators,” Opt. Eng. 37, 942–947 (1998).
    [CrossRef]
  9. J. S. Kane, “A smart pixel-based feedforward neural network,” IEEE Trans. Neural Netw. 9, 159–164 (1998).
    [CrossRef]
  10. T. M. Slagle, K. H. Wagner, “Optical smart-pixel-based close crossbar switch,” Appl. Opt. 36, 8336–8351 (1997).
    [CrossRef]
  11. X. Chen, “Normalized differential detection with smart pixels with smart illumination,” M.S. Thesis (Montana State University, Bozeman, Mont., 2000).

2003 (1)

2000 (1)

M. Azadeh, R. B. Darling, W. R. Babbitt, “A model for optoelectronically interconnected smart pixel arrays,” J. Lightwave Technol. 18, 1437–1444 (2000).
[CrossRef]

1999 (1)

M. Azadeh, R. B. Darling, W. R. Babbitt, “Characteristics of optoelectronic feedback for smart pixels with smart illumination,” IEEE J. Sel. Top. Quantum Electron. 5, 172–177 (1999).
[CrossRef]

1998 (4)

T. Kurokawa, S. Matso, T. Nakahara, K. Tateno, Y. Ohiso, A. Wakatsuki, H. Tsuda, “Design approaches for VCSEL's and VCSEL-based smart pixels toward parallel optoelectronic processing systems,” Appl. Opt. 37, 194–204 (1998).
[CrossRef]

J. S. Kane, T. G. Kincaid, P. Hemmer, “Optical processing with feedback using smart-pixel spatial light modulators,” Opt. Eng. 37, 942–947 (1998).
[CrossRef]

J. S. Kane, “A smart pixel-based feedforward neural network,” IEEE Trans. Neural Netw. 9, 159–164 (1998).
[CrossRef]

M. Azadeh, W. R. Babbitt, R. B. Darling, “Smart pixels with smart illumination,” Opt. Lett. 23, 786–788 (1998).
[CrossRef]

1997 (1)

1993 (1)

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE Quantum Electron. 29, 655–669 (1993).
[CrossRef]

Azadeh, M.

M. Azadeh, R. B. Darling, “Smart pixel optical sensor based on positive optical feedback,” Opt. Lett. 28, 352–354 (2003).
[CrossRef] [PubMed]

M. Azadeh, R. B. Darling, W. R. Babbitt, “A model for optoelectronically interconnected smart pixel arrays,” J. Lightwave Technol. 18, 1437–1444 (2000).
[CrossRef]

M. Azadeh, R. B. Darling, W. R. Babbitt, “Characteristics of optoelectronic feedback for smart pixels with smart illumination,” IEEE J. Sel. Top. Quantum Electron. 5, 172–177 (1999).
[CrossRef]

M. Azadeh, W. R. Babbitt, R. B. Darling, “Smart pixels with smart illumination,” Opt. Lett. 23, 786–788 (1998).
[CrossRef]

W. R. Babbitt, M. Azadeh, R. B. Darling, “Smart pixels with smart illumination for memory applications,” in Advanced Optical Memories and Interfaces to Computer Storage, P. Mitkas, Z. U. Hasan, eds.,Proc. SPIE3468, 108–115 (1998).
[CrossRef]

Babbitt, W. R.

M. Azadeh, R. B. Darling, W. R. Babbitt, “A model for optoelectronically interconnected smart pixel arrays,” J. Lightwave Technol. 18, 1437–1444 (2000).
[CrossRef]

M. Azadeh, R. B. Darling, W. R. Babbitt, “Characteristics of optoelectronic feedback for smart pixels with smart illumination,” IEEE J. Sel. Top. Quantum Electron. 5, 172–177 (1999).
[CrossRef]

M. Azadeh, W. R. Babbitt, R. B. Darling, “Smart pixels with smart illumination,” Opt. Lett. 23, 786–788 (1998).
[CrossRef]

W. R. Babbitt, M. Azadeh, R. B. Darling, “Smart pixels with smart illumination for memory applications,” in Advanced Optical Memories and Interfaces to Computer Storage, P. Mitkas, Z. U. Hasan, eds.,Proc. SPIE3468, 108–115 (1998).
[CrossRef]

Chen, X.

X. Chen, “Normalized differential detection with smart pixels with smart illumination,” M.S. Thesis (Montana State University, Bozeman, Mont., 2000).

Darling, R. B.

M. Azadeh, R. B. Darling, “Smart pixel optical sensor based on positive optical feedback,” Opt. Lett. 28, 352–354 (2003).
[CrossRef] [PubMed]

M. Azadeh, R. B. Darling, W. R. Babbitt, “A model for optoelectronically interconnected smart pixel arrays,” J. Lightwave Technol. 18, 1437–1444 (2000).
[CrossRef]

M. Azadeh, R. B. Darling, W. R. Babbitt, “Characteristics of optoelectronic feedback for smart pixels with smart illumination,” IEEE J. Sel. Top. Quantum Electron. 5, 172–177 (1999).
[CrossRef]

M. Azadeh, W. R. Babbitt, R. B. Darling, “Smart pixels with smart illumination,” Opt. Lett. 23, 786–788 (1998).
[CrossRef]

W. R. Babbitt, M. Azadeh, R. B. Darling, “Smart pixels with smart illumination for memory applications,” in Advanced Optical Memories and Interfaces to Computer Storage, P. Mitkas, Z. U. Hasan, eds.,Proc. SPIE3468, 108–115 (1998).
[CrossRef]

Hemmer, P.

J. S. Kane, T. G. Kincaid, P. Hemmer, “Optical processing with feedback using smart-pixel spatial light modulators,” Opt. Eng. 37, 942–947 (1998).
[CrossRef]

Kane, J. S.

J. S. Kane, T. G. Kincaid, P. Hemmer, “Optical processing with feedback using smart-pixel spatial light modulators,” Opt. Eng. 37, 942–947 (1998).
[CrossRef]

J. S. Kane, “A smart pixel-based feedforward neural network,” IEEE Trans. Neural Netw. 9, 159–164 (1998).
[CrossRef]

Kincaid, T. G.

J. S. Kane, T. G. Kincaid, P. Hemmer, “Optical processing with feedback using smart-pixel spatial light modulators,” Opt. Eng. 37, 942–947 (1998).
[CrossRef]

Kurokawa, T.

Lentine, A. L.

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE Quantum Electron. 29, 655–669 (1993).
[CrossRef]

Matso, S.

Miller, D. A. B.

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE Quantum Electron. 29, 655–669 (1993).
[CrossRef]

Nakahara, T.

Ohiso, Y.

Slagle, T. M.

Tateno, K.

Tsuda, H.

Wagner, K. H.

Wakatsuki, A.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron (1)

M. Azadeh, R. B. Darling, W. R. Babbitt, “Characteristics of optoelectronic feedback for smart pixels with smart illumination,” IEEE J. Sel. Top. Quantum Electron. 5, 172–177 (1999).
[CrossRef]

IEEE Quantum Electron (1)

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE Quantum Electron. 29, 655–669 (1993).
[CrossRef]

IEEE Trans. Neural Netw. (1)

J. S. Kane, “A smart pixel-based feedforward neural network,” IEEE Trans. Neural Netw. 9, 159–164 (1998).
[CrossRef]

J. Lightwave Technol (1)

M. Azadeh, R. B. Darling, W. R. Babbitt, “A model for optoelectronically interconnected smart pixel arrays,” J. Lightwave Technol. 18, 1437–1444 (2000).
[CrossRef]

Opt. Eng. (1)

J. S. Kane, T. G. Kincaid, P. Hemmer, “Optical processing with feedback using smart-pixel spatial light modulators,” Opt. Eng. 37, 942–947 (1998).
[CrossRef]

Opt. Lett. (2)

Other (2)

W. R. Babbitt, M. Azadeh, R. B. Darling, “Smart pixels with smart illumination for memory applications,” in Advanced Optical Memories and Interfaces to Computer Storage, P. Mitkas, Z. U. Hasan, eds.,Proc. SPIE3468, 108–115 (1998).
[CrossRef]

X. Chen, “Normalized differential detection with smart pixels with smart illumination,” M.S. Thesis (Montana State University, Bozeman, Mont., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simplified diagram of the SPSI optoelectronic feedback setup. The two beams created by the BPG can be scanned across the scene by use of a rotating galvo mirror. The beams thus have time-varying reflectivities, T12 and T22. Offsets in the detected signals can be subtracted (S1, S2). A unity gain amplifier (B) buffers each signal. To produce the LDD drive we compare the sum of the return signals to Vref in a differential amplifier. The normalized differential output, Vout, is the amplified (G) difference of the return signals.

Fig. 2
Fig. 2

Differential output for discrete values of T12 and T22. First T12 is held constant at 0.135 (♦), 0.222 (▲), and 0.609 (●) while T22 is varied. Then T22 is held constant at 0.135 (◊), 0.222 (△), and 0.609 (○) while T12 is varied. Curves represent the theoretical values predicted by Eq. (13).

Fig. 3
Fig. 3

Output of a single pixel as both beams scan horizontally, with a glass slide placed in the path of the lower beam as the bottom illustration shows. Only beam 1 crosses the slide, which causes an increase in Vout. The large spikes are due to light scattering at the edges of the slide. The six plots correspond to the following round-trip transmissions through the attenuators: 1, 0.85, 0.61, 0.17, 0.10, and 0.038. An offset that is due to cross talk is subtracted from each plot. The plot with the largest spikes corresponds to the highest transmission (T2 = 1.0), and the plot with the lowest spikes corresponds to the lowest transmission (T2 = 0.038).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

V ref = V 1 + V 2 = α ( R 1 + R 2 ) L out ,
V out = G ( V 2 V 1 ) = G α ( R 2 R 1 ) L out = G V ref ( R 2 R 1 ) ( R 2 + R 1 ) ,
V 1 = α 1 R 1 L out + γ 21 α 1 R 2 L out + κ 1 I + δ 1 ,
V 2 = α 2 R 2 L out + γ 12 α 2 R 1 L out + κ 2 I + δ 2 .
L out = β ( I I th ) ,
V 1 = ( α 1 β R 1 + γ 21 α 1 β R 2 + κ 1 ) I α 1 β I th R 1 γ 21 α 1 β I th R 2 + δ 1 ,
V 2 = ( α 2 β R 2 + γ 12 α 2 β R 1 + κ 2 ) I α 2 β I th R 2 γ 12 α 2 β I th R 1 + δ 2 ,
V 1 = ( a 1 T 1 2 + b 1 T 2 2 + c 1 ) I + d 1 T 1 2 + e 1 T 2 2 + f 1 ,
V 2 = ( a 2 T 2 2 + b 2 T 1 2 + c 2 ) I + d 2 T 2 2 + e 2 T 1 2 + f 2 ,
V 1 = ( 15.1 T 1 2 + 1.85 T 2 2 + 0.181 ) I 92.8 T 1 2 11.3 T 2 2 + 3.5 ,
V 2 = ( 14.8 T 2 2 + 1.57 T 1 2 + 0.147 ) I 91.2 T 2 2 9.4 T 1 2 + 6.1.
I = V ref + 102.2 T 1 2 + 102.5 T 2 2 9.6 16.7 T 1 2 + 16.7 T 2 2 + 0.33 .
V out = 2 [ ( 13.0 T 2 2 13.5 T 1 2 0.03 ) × ( V ref + 102.2 T 1 2 + 102.5 T 2 2 9.6 16.7 T 1 2 + 16.7 T 2 2 + 0.33 ) 79.9 T 2 2 + 83.4 T 1 2 + 2.6 ] ,

Metrics