Abstract

An acousto-optic tunable filter–based wavelength-selection module with features optimized for a wavelength-multiplexed optical scanner (W-MOS) is proposed and demonstrated. The W-MOS produces high-speed multiple scan beams if it is engaged with an agile tunable source with multiwavelength generation capability. In particular, the proposed fiber-connected module features high-speed, low-loss, narrow-linewidth, and single–multiple wavelength selection by means of radio frequency drive signal control for single- or multiple-beam scan operations. The unique module offers input laser beam power control that in turn delivers the desired scanned laser beam power shaping. Experimental results match module design theory and demonstrate a fast 5.4–µs wavelength selection speed, a low (1.53–dB) fiber-to-fiber optical insertion loss, a 5.55–nm 3–dB spectral width, and a 1500–1600–nm agile wavelength operational band.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Forward, “Passive beam-deflecting apparatus,” U.S. patent3,612,659 (12October1971).
  2. N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent6,687,036 (3February2004).
  3. Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
    [CrossRef]
  4. Product 5306BK-660, Thermo RGL (Richardson Grating Laboratory, Rochester, N.Y.2000).
  5. L. D. Dickson, “Method for making holographic optical elements with high diffraction efficiencies,” U.S. patent4,416,505 (22November1983).
  6. Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002).
    [CrossRef] [PubMed]
  7. Z. Yaqoob, N. A. Riza, “Low loss wavelength-multiplexed optical scanners using volume Bragg gratings for transmit-receive lasercom systems,” Opt. Eng. 43, 1128–1135 (2004).
    [CrossRef]
  8. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).
  9. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photo-thermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
    [CrossRef]
  10. Z. Yaqoob, M. A. Arain, N. A. Riza, “High-speed two-dimensional laser scanner by use of Bragg gratings in photo-thermorefractive glass,” Appl. Opt. 42, 5251–5262 (2003).
    [CrossRef] [PubMed]
  11. G. Alibert, F. Delorme, P. Boulet, J. Landreau, H. Nakajima, “Subnanosecond tunable laser using a single electroabsorption tuning super structure grating,” IEEE Photon. Technol. Lett. 9, 895–897 (1997).
    [CrossRef]
  12. F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication (OFC),Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.
  13. Z. Yaqoob, “Grating-based real-time smart optics for biomedicine and communications,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 2003).
  14. S. E. Harris, R. W. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744–747 (1969).
    [CrossRef]
  15. T. Yano, A. Watanabe, “New noncollinear acousto-optic tunable filter using birefringence in paratellurite,” Appl. Phys. Lett. 24, 256–258 (1974).
    [CrossRef]
  16. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
    [CrossRef]
  17. I. C. Chang, “Acousto-optic device and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
    [CrossRef]
  18. I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
    [CrossRef]
  19. V. B. Voloshinov, “Close to collinear acousto-optical interaction in paratellurite,” Opt. Eng. 31, 2089–2094 (1992).
    [CrossRef]
  20. G. Georgiev, L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
    [CrossRef]
  21. K. W. Cheung, “1 × 2 polarization-independent acousto-optic filter tunable over 1.30–1.56 µm,” Electron. Lett. 27, 314–315 (1991).
    [CrossRef]
  22. C. S. Qin, G. C. Huang, K. T. Chan, K. W. Cheung, “Low drive power, sidelobe free acousto-optic tunable filters/switches,” Electron. Lett. 31, 1237–1238 (1995).
    [CrossRef]
  23. N. A. Riza, J. Chen, “Ultrahigh 47-dB optical drop rejection multiwavelength add–drop filter using spatial filtering and dual bulk acousto-optic tunable filters,” Opt. Lett. 23, 945–947 (1998).
    [CrossRef]
  24. J. Sapriel, D. Charisssoux, V. Voloshinov, V. Molchanov, “Tunable acoustooptic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 892–899 (2002).
    [CrossRef]
  25. H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992).
    [CrossRef]
  26. D. A. Satorius, T. E. Dimmick, G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14, 1324–1326 (2002).
    [CrossRef]
  27. N. A. Riza, M. J. Mughal, “Fiber-optic tunable multiwavelength variable attenuator using bulk acousto-optics,” presented at the International Conference on Photonics in Switching (PS 2003), Paris, France, 28 September–2 October 2003.
  28. N. A. Riza, M. J. Mughal, “Fiber-optic tunable multiwavelength variable attenuator and routing module designs that use bulk acousto-optics,” Appl. Opt. 44, 792–799 (2005).
    [CrossRef] [PubMed]
  29. H. Kogelnik, “Coupled wave theory of thick holograms,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  30. J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, New York, 1984).
  31. I. C. Chang, “Development of an infrared tunable acousto-optic filter,” in Practical Infrared Optics, J. Zimmerman, G. Speake, eds., Proc. SPIE131, 2–10 (1978).
    [CrossRef]
  32. Product 5306BK-660 (NEOS Technologies, Melbourne, Fla., 2000).
  33. M. V. Buren, N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

Z. Yaqoob, N. A. Riza, “Low loss wavelength-multiplexed optical scanners using volume Bragg gratings for transmit-receive lasercom systems,” Opt. Eng. 43, 1128–1135 (2004).
[CrossRef]

2003 (2)

2002 (3)

D. A. Satorius, T. E. Dimmick, G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14, 1324–1326 (2002).
[CrossRef]

J. Sapriel, D. Charisssoux, V. Voloshinov, V. Molchanov, “Tunable acoustooptic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 892–899 (2002).
[CrossRef]

Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

1998 (1)

1997 (2)

G. Georgiev, L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

G. Alibert, F. Delorme, P. Boulet, J. Landreau, H. Nakajima, “Subnanosecond tunable laser using a single electroabsorption tuning super structure grating,” IEEE Photon. Technol. Lett. 9, 895–897 (1997).
[CrossRef]

1995 (1)

C. S. Qin, G. C. Huang, K. T. Chan, K. W. Cheung, “Low drive power, sidelobe free acousto-optic tunable filters/switches,” Electron. Lett. 31, 1237–1238 (1995).
[CrossRef]

1992 (3)

V. B. Voloshinov, “Close to collinear acousto-optical interaction in paratellurite,” Opt. Eng. 31, 2089–2094 (1992).
[CrossRef]

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992).
[CrossRef]

1991 (1)

K. W. Cheung, “1 × 2 polarization-independent acousto-optic filter tunable over 1.30–1.56 µm,” Electron. Lett. 27, 314–315 (1991).
[CrossRef]

1981 (1)

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
[CrossRef]

1976 (1)

I. C. Chang, “Acousto-optic device and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

1974 (2)

T. Yano, A. Watanabe, “New noncollinear acousto-optic tunable filter using birefringence in paratellurite,” Appl. Phys. Lett. 24, 256–258 (1974).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

1969 (2)

S. E. Harris, R. W. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744–747 (1969).
[CrossRef]

H. Kogelnik, “Coupled wave theory of thick holograms,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Alibert, G.

G. Alibert, F. Delorme, P. Boulet, J. Landreau, H. Nakajima, “Subnanosecond tunable laser using a single electroabsorption tuning super structure grating,” IEEE Photon. Technol. Lett. 9, 895–897 (1997).
[CrossRef]

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication (OFC),Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Arain, M. A.

Boulet, P.

G. Alibert, F. Delorme, P. Boulet, J. Landreau, H. Nakajima, “Subnanosecond tunable laser using a single electroabsorption tuning super structure grating,” IEEE Photon. Technol. Lett. 9, 895–897 (1997).
[CrossRef]

Burdge, G. L.

D. A. Satorius, T. E. Dimmick, G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14, 1324–1326 (2002).
[CrossRef]

Buren, M. V.

Chan, K. T.

C. S. Qin, G. C. Huang, K. T. Chan, K. W. Cheung, “Low drive power, sidelobe free acousto-optic tunable filters/switches,” Electron. Lett. 31, 1237–1238 (1995).
[CrossRef]

Chang, I. C.

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
[CrossRef]

I. C. Chang, “Acousto-optic device and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

I. C. Chang, “Development of an infrared tunable acousto-optic filter,” in Practical Infrared Optics, J. Zimmerman, G. Speake, eds., Proc. SPIE131, 2–10 (1978).
[CrossRef]

Charisssoux, D.

J. Sapriel, D. Charisssoux, V. Voloshinov, V. Molchanov, “Tunable acoustooptic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 892–899 (2002).
[CrossRef]

Chen, J.

Cheung, K. W.

C. S. Qin, G. C. Huang, K. T. Chan, K. W. Cheung, “Low drive power, sidelobe free acousto-optic tunable filters/switches,” Electron. Lett. 31, 1237–1238 (1995).
[CrossRef]

K. W. Cheung, “1 × 2 polarization-independent acousto-optic filter tunable over 1.30–1.56 µm,” Electron. Lett. 27, 314–315 (1991).
[CrossRef]

Delorme, F.

G. Alibert, F. Delorme, P. Boulet, J. Landreau, H. Nakajima, “Subnanosecond tunable laser using a single electroabsorption tuning super structure grating,” IEEE Photon. Technol. Lett. 9, 895–897 (1997).
[CrossRef]

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication (OFC),Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Dickson, L. D.

L. D. Dickson, “Method for making holographic optical elements with high diffraction efficiencies,” U.S. patent4,416,505 (22November1983).

Dimmick, T. E.

D. A. Satorius, T. E. Dimmick, G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14, 1324–1326 (2002).
[CrossRef]

Efimov, O. M.

Forward, R. L.

R. L. Forward, “Passive beam-deflecting apparatus,” U.S. patent3,612,659 (12October1971).

Georgiev, G.

G. Georgiev, L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

Glebov, L. B.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photo-thermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
[CrossRef]

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Glebova, L. N.

Harris, S. E.

Herrmann, H.

H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992).
[CrossRef]

Huang, G. C.

C. S. Qin, G. C. Huang, K. T. Chan, K. W. Cheung, “Low drive power, sidelobe free acousto-optic tunable filters/switches,” Electron. Lett. 31, 1237–1238 (1995).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory of thick holograms,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Konstantinov, L.

G. Georgiev, L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

Landreau, J.

G. Alibert, F. Delorme, P. Boulet, J. Landreau, H. Nakajima, “Subnanosecond tunable laser using a single electroabsorption tuning super structure grating,” IEEE Photon. Technol. Lett. 9, 895–897 (1997).
[CrossRef]

Molchanov, V.

J. Sapriel, D. Charisssoux, V. Voloshinov, V. Molchanov, “Tunable acoustooptic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 892–899 (2002).
[CrossRef]

Mughal, M. J.

N. A. Riza, M. J. Mughal, “Fiber-optic tunable multiwavelength variable attenuator and routing module designs that use bulk acousto-optics,” Appl. Opt. 44, 792–799 (2005).
[CrossRef] [PubMed]

N. A. Riza, M. J. Mughal, “Fiber-optic tunable multiwavelength variable attenuator using bulk acousto-optics,” presented at the International Conference on Photonics in Switching (PS 2003), Paris, France, 28 September–2 October 2003.

Müller-Reich, P.

H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992).
[CrossRef]

Nakajima, H.

G. Alibert, F. Delorme, P. Boulet, J. Landreau, H. Nakajima, “Subnanosecond tunable laser using a single electroabsorption tuning super structure grating,” IEEE Photon. Technol. Lett. 9, 895–897 (1997).
[CrossRef]

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication (OFC),Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Nikonorov, N. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Ougier, C.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication (OFC),Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Panysheva, E. I.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Petrovskii, G. T.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Qin, C. S.

C. S. Qin, G. C. Huang, K. T. Chan, K. W. Cheung, “Low drive power, sidelobe free acousto-optic tunable filters/switches,” Electron. Lett. 31, 1237–1238 (1995).
[CrossRef]

Reimann, V.

H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992).
[CrossRef]

Richardson, K. C.

Ricken, R.

H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992).
[CrossRef]

Riza, N. A.

N. A. Riza, M. J. Mughal, “Fiber-optic tunable multiwavelength variable attenuator and routing module designs that use bulk acousto-optics,” Appl. Opt. 44, 792–799 (2005).
[CrossRef] [PubMed]

Z. Yaqoob, N. A. Riza, “Low loss wavelength-multiplexed optical scanners using volume Bragg gratings for transmit-receive lasercom systems,” Opt. Eng. 43, 1128–1135 (2004).
[CrossRef]

Z. Yaqoob, M. A. Arain, N. A. Riza, “High-speed two-dimensional laser scanner by use of Bragg gratings in photo-thermorefractive glass,” Appl. Opt. 42, 5251–5262 (2003).
[CrossRef] [PubMed]

M. V. Buren, N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003).
[CrossRef] [PubMed]

Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002).
[CrossRef] [PubMed]

Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
[CrossRef]

N. A. Riza, J. Chen, “Ultrahigh 47-dB optical drop rejection multiwavelength add–drop filter using spatial filtering and dual bulk acousto-optic tunable filters,” Opt. Lett. 23, 945–947 (1998).
[CrossRef]

N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent6,687,036 (3February2004).

N. A. Riza, M. J. Mughal, “Fiber-optic tunable multiwavelength variable attenuator using bulk acousto-optics,” presented at the International Conference on Photonics in Switching (PS 2003), Paris, France, 28 September–2 October 2003.

Rizvi, A. A.

Sapriel, J.

J. Sapriel, D. Charisssoux, V. Voloshinov, V. Molchanov, “Tunable acoustooptic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 892–899 (2002).
[CrossRef]

Satorius, D. A.

D. A. Satorius, T. E. Dimmick, G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14, 1324–1326 (2002).
[CrossRef]

Savvin, V. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Seibert, H.

H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992).
[CrossRef]

Slempkes, S.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication (OFC),Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Smirnov, V. I.

Sohler, W.

H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992).
[CrossRef]

Stroud, R.

J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, New York, 1984).

Tsekhomskii, V. A.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Tunimanova, I. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Voloshinov, V.

J. Sapriel, D. Charisssoux, V. Voloshinov, V. Molchanov, “Tunable acoustooptic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 892–899 (2002).
[CrossRef]

Voloshinov, V. B.

V. B. Voloshinov, “Close to collinear acousto-optical interaction in paratellurite,” Opt. Eng. 31, 2089–2094 (1992).
[CrossRef]

Wallace, R. W.

Watanabe, A.

T. Yano, A. Watanabe, “New noncollinear acousto-optic tunable filter using birefringence in paratellurite,” Appl. Phys. Lett. 24, 256–258 (1974).
[CrossRef]

Xu, J.

J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, New York, 1984).

Yano, T.

T. Yano, A. Watanabe, “New noncollinear acousto-optic tunable filter using birefringence in paratellurite,” Appl. Phys. Lett. 24, 256–258 (1974).
[CrossRef]

Yaqoob, Z.

Z. Yaqoob, N. A. Riza, “Low loss wavelength-multiplexed optical scanners using volume Bragg gratings for transmit-receive lasercom systems,” Opt. Eng. 43, 1128–1135 (2004).
[CrossRef]

Z. Yaqoob, M. A. Arain, N. A. Riza, “High-speed two-dimensional laser scanner by use of Bragg gratings in photo-thermorefractive glass,” Appl. Opt. 42, 5251–5262 (2003).
[CrossRef] [PubMed]

Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002).
[CrossRef] [PubMed]

Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
[CrossRef]

Z. Yaqoob, “Grating-based real-time smart optics for biomedicine and communications,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 2003).

Appl. Opt. (6)

Appl. Phys. Lett. (2)

T. Yano, A. Watanabe, “New noncollinear acousto-optic tunable filter using birefringence in paratellurite,” Appl. Phys. Lett. 24, 256–258 (1974).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory of thick holograms,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Electron. Lett. (2)

K. W. Cheung, “1 × 2 polarization-independent acousto-optic filter tunable over 1.30–1.56 µm,” Electron. Lett. 27, 314–315 (1991).
[CrossRef]

C. S. Qin, G. C. Huang, K. T. Chan, K. W. Cheung, “Low drive power, sidelobe free acousto-optic tunable filters/switches,” Electron. Lett. 31, 1237–1238 (1995).
[CrossRef]

IEE Electron. Lett. (1)

H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. A. Satorius, T. E. Dimmick, G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14, 1324–1326 (2002).
[CrossRef]

G. Alibert, F. Delorme, P. Boulet, J. Landreau, H. Nakajima, “Subnanosecond tunable laser using a single electroabsorption tuning super structure grating,” IEEE Photon. Technol. Lett. 9, 895–897 (1997).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

I. C. Chang, “Acousto-optic device and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

J. Lightwave Technol. (1)

J. Sapriel, D. Charisssoux, V. Voloshinov, V. Molchanov, “Tunable acoustooptic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 892–899 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (3)

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
[CrossRef]

V. B. Voloshinov, “Close to collinear acousto-optical interaction in paratellurite,” Opt. Eng. 31, 2089–2094 (1992).
[CrossRef]

Z. Yaqoob, N. A. Riza, “Low loss wavelength-multiplexed optical scanners using volume Bragg gratings for transmit-receive lasercom systems,” Opt. Eng. 43, 1128–1135 (2004).
[CrossRef]

Opt. Laser Technol. (1)

G. Georgiev, L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Other (10)

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication (OFC),Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Z. Yaqoob, “Grating-based real-time smart optics for biomedicine and communications,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 2003).

Product 5306BK-660, Thermo RGL (Richardson Grating Laboratory, Rochester, N.Y.2000).

L. D. Dickson, “Method for making holographic optical elements with high diffraction efficiencies,” U.S. patent4,416,505 (22November1983).

R. L. Forward, “Passive beam-deflecting apparatus,” U.S. patent3,612,659 (12October1971).

N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent6,687,036 (3February2004).

N. A. Riza, M. J. Mughal, “Fiber-optic tunable multiwavelength variable attenuator using bulk acousto-optics,” presented at the International Conference on Photonics in Switching (PS 2003), Paris, France, 28 September–2 October 2003.

J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, New York, 1984).

I. C. Chang, “Development of an infrared tunable acousto-optic filter,” in Practical Infrared Optics, J. Zimmerman, G. Speake, eds., Proc. SPIE131, 2–10 (1978).
[CrossRef]

Product 5306BK-660 (NEOS Technologies, Melbourne, Fla., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed bulk acousto-optic wavelength agile filter module: PC, polarization controller.

Fig. 2
Fig. 2

Anisotropic diffraction of light: the k-vector diagram lies in the tz plane, i.e., the optic axis (or z axis) is in the plane of incidence, (a) Acousto-optic interaction. The incident light is ordinarily polarized. (b) Angles (measured from the z axis) corresponding to incident light, diffracted light, acoustic wave vector, and acoustic wave fronts. α = (π − θa), θR = θw − θi, θS = θd − θw.

Fig. 3
Fig. 3

Measured diffraction efficiency (%) of the noncollinear AOTF versus RF signal power for ordinarily polarized incident light. | θR | (absolute value of the angles between the incident light measured from the acoustic wave fronts) = 8.415°, Va = 677 m/s, fa = 34.79 MHz, λB = 1550 nm.

Fig. 4
Fig. 4

For ordinarily polarized incident light, the theoretical and experimental passbands of the noncollinear AOTF module (θi = 16.44°) for (a) a classic single-pass design and (b) the proposed double-pass configuration.

Fig. 5
Fig. 5

Theoretically calculated passband response of a noncollinear AOTF module (θi = 53.5°) in (a) the classic single-pass design and (b) the double-pass configuration of Fig. 1.

Fig. 6
Fig. 6

Oscilloscope traces of (a) rise time and (b) fall time (measured from 10% to 90% of the output signal) of the noncollinear AOTF agile wavelength filter module.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

n R , 1 = n i , 1 = n o , n S , 1 = n d , 1 = ( cos 2 θ d , 1 n o 2 + sin 2 θ d , 1 n e 2 ) 1 / 2 .
n o = [ 1 + 2.5844 λ o 2 λ o 2 ( 0.1342 ) 2 + 1.1557 λ o 2 λ o 2 ( 0.2638 ) 2 ] 1 / 2 ,
n e = [ 1 + 2.8525 λ o 2 λ o 2 ( 0.1342 ) 2 + 1.5141 λ o 2 λ o 2 ( 0.2631 ) 2 ] 1 / 2 .
tan θ a = n i , 1 sin θ i , 1 n d , 1 sin θ d , 1 n i , 1 cos θ i , 1 n d , 1 cos θ d , 1 .
tan θ w = 1 tan θ a = n d , 1 cos θ d , 1 n i , 1 cos θ i , 1 n i , 1 sin θ i , 1 n d , 1 sin θ d , 1 ,
θ R , 1 = θ w θ i , 1 , θ S , 1 = θ d , 1 θ w .
n S , 1 sin θ S , 1 = λ o f a V a n R , 1 sin θ R , 1 ,
η 1 = γ 1 2 ξ 1 2 + γ 1 2 sin 2 ( ξ 1 2 + γ 1 2 ) 1 / 2 ,
γ 1 = π Δ n 1 d ( λ o + Δ λ o ) cos θ R , 1 ,
ξ 1 = Δ λ o λ o 1 F 1 π d f a V a tan θ R , 1 .
F 1 = [ 1 + V a n R , 1 λ o f a sin θ R , 1 ( n S , 1 2 n R , 1 2 ) ( λ o n R , 1 V a f a sin θ R , 1 ) n R , 1 λ o n S , 1 V a f a n R , 1 sin θ R , 1 n S , 1 λ o ] 1 ,
n R , 1 λ o = n o λ o ,
n S , 1 λ o = n S , 1 3 ( cos 2 θ d , 1 n o 3 n o λ o + sin 2 θ d , 1 n e 3 n e λ o ) .
θ R , 2 = 2 θ S , 1 , B θ S , 1 .
n R , 2 = n i , 2 = ( cos 2 θ i , 2 n o 2 + sin 2 θ i , 2 n e 2 ) 1 / 2 ,
η 2 = γ 2 2 ξ 2 2 + γ 2 2 sin 2 ( ξ 2 2 + γ 2 2 ) 1 / 2 ,
γ 2 = π Δ n 2 d ( λ o + Δ λ o ) cos θ R , 2 ,
ξ 2 = π d f a V a { Δ θ R , 2 F 2 Δ λ o λ o 1 F 3 tan θ R , 2 } ,
F 2 = [ 1 + n R , 2 λ o f a 4 V a cos θ R , 2 { ( V a λ o f a ) 2 ( n S , 2 2 + n R , 2 2 ) 1 } × ( 1 n o 2 1 n e 2 ) sin 2 θ i , 2 ] 1 ,
F 3 = [ 1 + V a n R , 2 λ o f a sin θ R , 2 ( n S , 2 2 n R , 2 2 ) ( λ o n R , 2 V a f a sin θ R , 2 ) n R , 2 λ o n S , 2 V a f a n R , 2 sin θ R , 2 n S , 2 λ o ] 1 .
n R , 2 λ o = n R , 2 3 ( cos 2 θ i , 2 n o 3 n o λ o + sin 2 θ i , 2 n e 3 n e λ o ) ,
n S , 2 λ o = n o λ o .
p 1 = ( p 11 p 12 ) cos θ d , 1 2 .
p 2 = ( p 11 p 12 ) cos θ i , 2 2 .
M 2 , j = n S , j 4 n R , j 2 p j 2 ρ V a 3 ,
Δ n j = 1 2 n S , j 2 n R , j p j ( 2 I a ρ V a 3 ) 1 / 2 = ( 1 2 I a M 2 , j ) 1 / 2 .

Metrics