Abstract

A novel reading and writing technology for a holographic storage system called collinear holography is developed. With this method, two-dimensional page data can be recorded as volumetric holograms generated by a reference beam and a signal beam that are bundled on the same axis and irradiated on the recording medium through a single objective lens. The multiplex recording and reconstructing process is demonstrated, and it is presented that optical configuration and the dichroic media disk structure are suitable for a compact system. This method enables us to construct a small volumetric optical disk storage system with CD and DVD upper compatibility.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For example, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  2. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, R. Snyder, “High-transfer-rate high-capacity holographic disk datastorage system,” Appl. Opt. 43, 4902–4914 (2004).
    [CrossRef] [PubMed]
  3. D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).
  4. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  5. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  6. D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21, 1780–1782 (1996).
    [CrossRef] [PubMed]
  7. X. Tan, O. Matoba, T. Shimura, K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40, 4721–4727 (2001).
    [CrossRef]
  8. Y. H. Kang, K. H. Kim, B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739–741 (1997).
    [CrossRef] [PubMed]
  9. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997).
    [CrossRef] [PubMed]
  10. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997).
    [CrossRef]
  11. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
    [CrossRef] [PubMed]
  12. H. Horimai, J. Li, “A novel collinear optical setup for holographic data storage system,” in Optical Data Storage 2004, B. V. K. Vijaya Kumar, H. Kobori, eds., Proc. SPIE5380, 297–303 (2004).
    [CrossRef]

2004 (1)

2001 (1)

1997 (4)

1996 (1)

1995 (1)

1993 (1)

1991 (1)

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Ashley, J.

Barbastathis, G.

Bashaw, M. C.

Bernal, M.-P.

Bjornson, E.

Burr, G. W.

Coufal, H.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Grygier, R. K.

Günther, H.

Heanue, J. F.

Hesselink, L.

Hoffnagle, J. A.

Horimai, H.

H. Horimai, J. Li, “A novel collinear optical setup for holographic data storage system,” in Optical Data Storage 2004, B. V. K. Vijaya Kumar, H. Kobori, eds., Proc. SPIE5380, 297–303 (2004).
[CrossRef]

Horner, M. G.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Jefferson, C. M.

Kang, Y. H.

Kim, K. H.

Kuroda, K.

Kwan, D.

Lande, D.

Lee, B.

Levene, M.

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Li, J.

H. Horimai, J. Li, “A novel collinear optical setup for holographic data storage system,” in Optical Data Storage 2004, B. V. K. Vijaya Kumar, H. Kobori, eds., Proc. SPIE5380, 297–303 (2004).
[CrossRef]

Macfarlane, R. M.

Marcus, B.

Matoba, O.

Mok, F. H.

Okas, R.

Orlov, S. S.

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Phillips, W.

Psaltis, D.

Pu, A.

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Shelby, R. M.

Shimura, T.

Sincerbox, G. T.

Snyder, R.

Sundaram, P.

Takashima, Y.

Tan, X.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Waldman, D. A.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Appl. Opt. (2)

J. Imaging Sci. Technol. (1)

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Opt. Lett. (6)

Other (2)

H. Horimai, J. Li, “A novel collinear optical setup for holographic data storage system,” in Optical Data Storage 2004, B. V. K. Vijaya Kumar, H. Kobori, eds., Proc. SPIE5380, 297–303 (2004).
[CrossRef]

For example, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical configuration of the collinear holography as a novel reading and writing technology for a holographic storage system. The green or blue laser and the red laser mean a laser beam with wavelengths of green or blue light and red light.

Fig. 2
Fig. 2

One kind of 2-D digital page-data pattern used in the collinear holographic system: (a) write process pattern and (b) read process pattern are displayed on the SLM.

Fig. 3
Fig. 3

Schematic of a dichroic reflective structure disc media to record in the collinear holographic system.

Fig. 4
Fig. 4

Page data format encoded from the user data to be used in the collinear holographic system.

Fig. 5
Fig. 5

Microscope photograph of a hologram stored in the media of the collinear holographic system.

Fig. 6
Fig. 6

Reconstructed 2-D digital page-data pattern image from the collinear holographic system.

Fig. 7
Fig. 7

Reconstructed 2-D page-data images from the hologram by shifting of the position of the recorded hologram in both radial and tangential directions. The reconstructed images disappeared completely with a 3-µm shift in both directions, indicating that the shift selectivity of the collinear holography allows us to record holograms by overlapping at a pitch of at least 3 µm.

Fig. 8
Fig. 8

Three reconstructed 2-D page-data images from the recording order of the first, tenth, and twentieth with 20 multiplex recording holograms overlapped at 3 µm.

Fig. 9
Fig. 9

SNR of the reconstructed 2-D image from the 20 multiplex recording holograms with overlapping at a 3-µm pitch. The qualities of them are almost similar.

Fig. 10
Fig. 10

Symbol error rate of the reconstructed 2-D image from the 20 multiplex recording holograms with overlapping at a 3-µm pitch. The user data can be decoded at these symbol error rates.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR = µ on µ off ( σ on 2 + σ off 2 ) 1 / 2 ,

Metrics