Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Engineering the nonlinear phase shift with multistage autoregressive moving-average optical filters

Not Accessible

Your library or personal account may give you access

Abstract

We propose and demonstrate the application of concepts from digital filter design in order to optimize artificial optical resonant structures to produce a nearly ideal nonlinear phase shift response. Multistage autoregressive moving average (ARMA) optical filters (ring-resonator-based Mach–Zehnder interferometer lattices) are designed and studied. The filter group delay is used as a measure instead of finesse or quality factor to study the nonlinear sensitivity for multiple resonances. The nonlinearity of a four-stage ARMA filter is 17 times higher than that of the intrinsic material of the same group delay. We demonstrate that the nonlinear sensitivity can be increased within constant bandwidth by allocating more in-band phase or by using higher-order filter structures and that the nonlinear sensitivity enhancement improves with increasing group delay. We also investigate methods to precompensate the nonlinear response to reduce the occurrence of optical bistabilities. The effect of optical loss, including linear absorption and two-photon absorption, is discussed in postanalysis. In addition, we discuss how the improvement in nonlinear response scales with respect to various filter parameters.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Engineering the nonlinear phase shift

Yan Chen, Geeta Pasrija, Behrouz Farhang-Boroujeny, and Steve Blair
Opt. Lett. 28(20) 1945-1947 (2003)

Nonlinearity enhancement in finite coupled-resonator slow-light waveguides

Yan Chen and Steve Blair
Opt. Express 12(15) 3353-3366 (2004)

Analysis of optical ARMA architectures in the slow-light regime

Vishnupriya Govindan and Steve Blair
J. Opt. Soc. Am. B 25(12) C116-C126 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved