Abstract

A theory is developed for predicting a second-order hot-image formation in high-power laser systems. Light diffracted from a small optical scatterer interferes with an intense original wave in the nonlinear medium to produce a hologram like a Fresnel-zone plate. The theoretical model shows that the hologram produces a negative first-order diffractive wave focused to the traditional hot image and negative second-order diffraction that causes another intense image, namely, a second-order hot image. It is found by analysis that the location of the second-order hot image arises in a downstream plane with a half-distance from the medium to the scatterer. Results of the numerical calculations show that the peak intensity of the nonlinear image may reach a level high enough to damage optical components with the increase of the breakup integral (B integral), indicating that the image may also potentially damage expensive optical components in high-power laser systems.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription