Abstract

Photonic crystal fibers (PCFs) are microstructured waveguides that are used in metrology, nonlinear optics, and coherent tomography. PCF studies are focused mainly on the improvement of dispersion properties and wide spectral single-mode operating domains. Consequently, in the astronomical context this kind of fiber is a good candidate for use in the design of a fiber-linked version of a stellar interferometer for aperture synthesis. We discuss the potential of these fibers to take advantage of wide spectral single-mode operation. We propose an experimental setup that acts as a two-beam interferometer that uses PCFs to measure fringe contrast at four wavelengths (670, 980, 1328, and 1543 nm), which correspond to the R, I, J, and H astronomical bands, respectively, with the same couple of PCFs. For this purpose we use, for the first time to our knowledge, a piezoelectric PCF optical path modulator.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376–1378 (2001).
    [CrossRef]
  2. P. A. Champert, V. Couderc, A. Barthélémy, “Multi-watt, continuous wave, continuum generation in dispersion shifted fiber by use of high power fiber source,” presented at the Meeting on NonLinear Guided Waves and Their Applications, Toronto, Canada, 28–31 March 2004.
  3. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28, 182–184 (2003).
    [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  5. T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  6. J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” Opt. Soc. Am. A 15, 748–752 (1998).
    [CrossRef]
  7. G. Perrin, O. Lai, P. J. Lena, V. Coude du Foresto, “Fibered large interferometer on top of Mauna Kea: OHANA, the Optical Hawaiian Array for Nanoradian Astronomy,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 708–714 (2000).
    [CrossRef]
  8. S. Diddams, J. C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996).
    [CrossRef]
  9. These data are available at http://www.blazephotonics.com/ .
  10. F. Reynaud, E. Delaire, “Linear optical path modulation with λ/200 accuracy using a fiber stretcher,” Electron. Lett. 29, 1718–1719 (1993).
    [CrossRef]
  11. L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.
  12. F. Reynaud, H. Lagorceix, “Stabilization and control of a fiber array for the coherent transport of beams in a stellar interferometer,” in Proceedings of Integrated Optics for Astronomical Interferometry, P. Kern, F. Malbet, eds. (Academic, Grenoble, France, 1996), pp. 249–253.
  13. S. Vergnole, L. Delage, F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” Opt. Commun. 232, 31–43 (2004).
    [CrossRef]
  14. S. Vergnole, L. Delage, F. Reynaud, “Measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” in New Frontiers in Stellar Interferometry, W. A. Traub, ed., Proc. SPIE5491, 1406–1415 (2004).
    [CrossRef]
  15. D. H. Rogstad, “A technique for measuring visibility phase with an optical interferometer in the presence of atmospheric seeing,” Appl. Opt. 7, 585–588 (1968).
    [CrossRef] [PubMed]
  16. L. Delage, F. Reynaud, A. Lannes, “Laboratory imaging stellar interferometer with fiber links,” Appl. Opt. 39, 6406–6420 (2000).
    [CrossRef]
  17. L. M. Simohamed, F. Reynaud, “Characterisation of the dispersion evolution versus stretching in a large stroke optical fibre delay line,” Opt. Commun. 159, 118–128 (1999).
    [CrossRef]
  18. A. Peyrilloux, D. Pagnoux, F. Reynaud, “Evaluation of photonic crystal fiber potential for fiber linked version of stellar interferometers,” in Interferometry for Optical Astronomy II, W. A. Traub, ed., Proc. SPIE4838, 1334–1340 (2003).
    [CrossRef]
  19. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. Paek, G. Yang, “Photonic crystal fiber coupler,” Opt. Lett. 27, 812–814 (2002).
    [CrossRef]

2004 (1)

S. Vergnole, L. Delage, F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

2003 (1)

2002 (1)

2001 (1)

2000 (1)

1999 (1)

L. M. Simohamed, F. Reynaud, “Characterisation of the dispersion evolution versus stretching in a large stroke optical fibre delay line,” Opt. Commun. 159, 118–128 (1999).
[CrossRef]

1998 (1)

J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” Opt. Soc. Am. A 15, 748–752 (1998).
[CrossRef]

1997 (1)

1996 (2)

1993 (1)

F. Reynaud, E. Delaire, “Linear optical path modulation with λ/200 accuracy using a fiber stretcher,” Electron. Lett. 29, 1718–1719 (1993).
[CrossRef]

1968 (1)

Atkin, D. M.

Auguste, J. L.

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

Bahloul, F.

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

Barthélémy, A.

P. A. Champert, V. Couderc, A. Barthélémy, “Multi-watt, continuous wave, continuum generation in dispersion shifted fiber by use of high power fiber source,” presented at the Meeting on NonLinear Guided Waves and Their Applications, Toronto, Canada, 28–31 March 2004.

Birks, T. A.

Blondy, J. M.

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

Champert, P. A.

P. A. Champert, V. Couderc, A. Barthélémy, “Multi-watt, continuous wave, continuum generation in dispersion shifted fiber by use of high power fiber source,” presented at the Meeting on NonLinear Guided Waves and Their Applications, Toronto, Canada, 28–31 March 2004.

Chen, Z.

Coude du Foresto, V.

G. Perrin, O. Lai, P. J. Lena, V. Coude du Foresto, “Fibered large interferometer on top of Mauna Kea: OHANA, the Optical Hawaiian Array for Nanoradian Astronomy,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 708–714 (2000).
[CrossRef]

Couderc, V.

P. A. Champert, V. Couderc, A. Barthélémy, “Multi-watt, continuous wave, continuum generation in dispersion shifted fiber by use of high power fiber source,” presented at the Meeting on NonLinear Guided Waves and Their Applications, Toronto, Canada, 28–31 March 2004.

de Sandro, J. P.

J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” Opt. Soc. Am. A 15, 748–752 (1998).
[CrossRef]

Delage, L.

S. Vergnole, L. Delage, F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

L. Delage, F. Reynaud, A. Lannes, “Laboratory imaging stellar interferometer with fiber links,” Appl. Opt. 39, 6406–6420 (2000).
[CrossRef]

S. Vergnole, L. Delage, F. Reynaud, “Measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” in New Frontiers in Stellar Interferometry, W. A. Traub, ed., Proc. SPIE5491, 1406–1415 (2004).
[CrossRef]

Delaire, E.

F. Reynaud, E. Delaire, “Linear optical path modulation with λ/200 accuracy using a fiber stretcher,” Electron. Lett. 29, 1718–1719 (1993).
[CrossRef]

Diddams, S.

Diels, J. C.

Eom, J. B.

Gäbel, K.

Gasca, L.

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

Hänsch, T. W.

Holzwarth, R.

Kim, J.

Knight, J. C.

Labonté, L.

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

Lagorceix, H.

F. Reynaud, H. Lagorceix, “Stabilization and control of a fiber array for the coherent transport of beams in a stellar interferometer,” in Proceedings of Integrated Optics for Astronomical Interferometry, P. Kern, F. Malbet, eds. (Academic, Grenoble, France, 1996), pp. 249–253.

Lai, O.

G. Perrin, O. Lai, P. J. Lena, V. Coude du Foresto, “Fibered large interferometer on top of Mauna Kea: OHANA, the Optical Hawaiian Array for Nanoradian Astronomy,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 708–714 (2000).
[CrossRef]

Lannes, A.

Lee, B. H.

Lena, P. J.

G. Perrin, O. Lai, P. J. Lena, V. Coude du Foresto, “Fibered large interferometer on top of Mauna Kea: OHANA, the Optical Hawaiian Array for Nanoradian Astronomy,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 708–714 (2000).
[CrossRef]

Mélin, G.

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

Moon, D. S.

Nelson, J. S.

Paek, U.

Pagnoux, D.

A. Peyrilloux, D. Pagnoux, F. Reynaud, “Evaluation of photonic crystal fiber potential for fiber linked version of stellar interferometers,” in Interferometry for Optical Astronomy II, W. A. Traub, ed., Proc. SPIE4838, 1334–1340 (2003).
[CrossRef]

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

Perrin, G.

G. Perrin, O. Lai, P. J. Lena, V. Coude du Foresto, “Fibered large interferometer on top of Mauna Kea: OHANA, the Optical Hawaiian Array for Nanoradian Astronomy,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 708–714 (2000).
[CrossRef]

Peyrilloux, A.

A. Peyrilloux, D. Pagnoux, F. Reynaud, “Evaluation of photonic crystal fiber potential for fiber linked version of stellar interferometers,” in Interferometry for Optical Astronomy II, W. A. Traub, ed., Proc. SPIE4838, 1334–1340 (2003).
[CrossRef]

Poprawe, R.

Reynaud, F.

S. Vergnole, L. Delage, F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

L. Delage, F. Reynaud, A. Lannes, “Laboratory imaging stellar interferometer with fiber links,” Appl. Opt. 39, 6406–6420 (2000).
[CrossRef]

L. M. Simohamed, F. Reynaud, “Characterisation of the dispersion evolution versus stretching in a large stroke optical fibre delay line,” Opt. Commun. 159, 118–128 (1999).
[CrossRef]

F. Reynaud, E. Delaire, “Linear optical path modulation with λ/200 accuracy using a fiber stretcher,” Electron. Lett. 29, 1718–1719 (1993).
[CrossRef]

A. Peyrilloux, D. Pagnoux, F. Reynaud, “Evaluation of photonic crystal fiber potential for fiber linked version of stellar interferometers,” in Interferometry for Optical Astronomy II, W. A. Traub, ed., Proc. SPIE4838, 1334–1340 (2003).
[CrossRef]

S. Vergnole, L. Delage, F. Reynaud, “Measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” in New Frontiers in Stellar Interferometry, W. A. Traub, ed., Proc. SPIE5491, 1406–1415 (2004).
[CrossRef]

F. Reynaud, H. Lagorceix, “Stabilization and control of a fiber array for the coherent transport of beams in a stellar interferometer,” in Proceedings of Integrated Optics for Astronomical Interferometry, P. Kern, F. Malbet, eds. (Academic, Grenoble, France, 1996), pp. 249–253.

Rogstad, D. H.

Roy, P.

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

Russbüldt, P.

Russell, P. St. J.

Simohamed, L. M.

L. M. Simohamed, F. Reynaud, “Characterisation of the dispersion evolution versus stretching in a large stroke optical fibre delay line,” Opt. Commun. 159, 118–128 (1999).
[CrossRef]

Udem, T.

Vergnole, S.

S. Vergnole, L. Delage, F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

S. Vergnole, L. Delage, F. Reynaud, “Measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” in New Frontiers in Stellar Interferometry, W. A. Traub, ed., Proc. SPIE5491, 1406–1415 (2004).
[CrossRef]

Wadsworth, W. J.

Wang, Y.

Windeler, R. S.

Yang, G.

Zghal, M.

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

Zhao, Y.

Zimmermann, M.

Appl. Opt. (2)

Electron. Lett. (1)

F. Reynaud, E. Delaire, “Linear optical path modulation with λ/200 accuracy using a fiber stretcher,” Electron. Lett. 29, 1718–1719 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

S. Vergnole, L. Delage, F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

L. M. Simohamed, F. Reynaud, “Characterisation of the dispersion evolution versus stretching in a large stroke optical fibre delay line,” Opt. Commun. 159, 118–128 (1999).
[CrossRef]

Opt. Lett. (5)

Opt. Soc. Am. A (1)

J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” Opt. Soc. Am. A 15, 748–752 (1998).
[CrossRef]

Other (7)

G. Perrin, O. Lai, P. J. Lena, V. Coude du Foresto, “Fibered large interferometer on top of Mauna Kea: OHANA, the Optical Hawaiian Array for Nanoradian Astronomy,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 708–714 (2000).
[CrossRef]

P. A. Champert, V. Couderc, A. Barthélémy, “Multi-watt, continuous wave, continuum generation in dispersion shifted fiber by use of high power fiber source,” presented at the Meeting on NonLinear Guided Waves and Their Applications, Toronto, Canada, 28–31 March 2004.

These data are available at http://www.blazephotonics.com/ .

A. Peyrilloux, D. Pagnoux, F. Reynaud, “Evaluation of photonic crystal fiber potential for fiber linked version of stellar interferometers,” in Interferometry for Optical Astronomy II, W. A. Traub, ed., Proc. SPIE4838, 1334–1340 (2003).
[CrossRef]

S. Vergnole, L. Delage, F. Reynaud, “Measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project,” in New Frontiers in Stellar Interferometry, W. A. Traub, ed., Proc. SPIE5491, 1406–1415 (2004).
[CrossRef]

L. Labonté, F. Bahloul, P. Roy, D. Pagnoux, J. M. Blondy, J. L. Auguste, G. Mélin, L. Gasca, M. Zghal, “Experimental and numerical analysis of the birefringence into microstructured optical fibres,” presented at the European Conference on Optical Communication, Stockholm, Sweden, 5–9 September 2004.

F. Reynaud, H. Lagorceix, “Stabilization and control of a fiber array for the coherent transport of beams in a stellar interferometer,” in Proceedings of Integrated Optics for Astronomical Interferometry, P. Kern, F. Malbet, eds. (Academic, Grenoble, France, 1996), pp. 249–253.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Stellar interferometer arms: (a) With conventional single-mode fiber, four kinds of fiber are needed for a 1000-nm bandwidth. (b) With PCF, the same fiber is used from 600 to 1600 nm.

Fig. 2
Fig. 2

Experimental setup: PCFs and a Mach–Zehnder interferometer. P1–P3, off-axis parabolas; T1, T2, 10-m-long PCFs; PZT, piezoelectric transducer.

Fig. 3
Fig. 3

Transverse section of PCF used in our experiment.

Fig. 4
Fig. 4

Chromatic dispersion as a function of wavelength: measurement and simulation. The simulations were made with the real shape of the hole taken into account. Thus, because of the image processing of the transverse section of the PCF, uncertainties [±5 ps/(nm/km)] exist, but error bars for simulation have been eliminated here to keep the figure readable.

Fig. 5
Fig. 5

Fringe pattern for a 1543-nm mean wavelength beyond the lasing threshold.

Fig. 6
Fig. 6

Fringe pattern for a 670-nm mean wavelength.

Fig. 7
Fig. 7

Fringe pattern for a 1543-nm mean wavelength.

Tables (2)

Tables Icon

Table 1 Properties of Sources Used in Our Experiment

Tables Icon

Table 2 Variation of Contrast and Delay Line Position as Functions of Wavelength

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Contrast = I max I min I max + I min ,

Metrics