Abstract

The jitter and frequency-detuning dynamics of a 10-GHz rational-harmonic frequency-multiplied pulse train generated from an erbium-doped fiber laser (EDFL) is studied. The EDFL is self-feedback seeded and optically injection locked by a gain-switched laser diode (GSLD) with a pulse width and an average power of 17.6 ps and 0.2 mW, respectively, at a repetition frequency of 1 GHz. The repetition frequency of the optical pulse train can be tenth-order multiplied by a slight detuning of the repetition frequency of the GSLD to match the rational-harmonic injection-locked condition of the EDFL. As the repetition frequency is multiplied from 1 to 10 GHz, the peak power, the pulse width, and the frequency-detuning bandwidth of the injection-locked EDFL pulses decrease from 1.2 to 0.3 W, from 40 to 21 ps, and from 40 to 9 kHz, respectively. The timing jitter of the injection-locked EDFL repeated at 1 GHz remains unchanged (<0.5 ps) within the detuning bandwidth, which inevitably increases to 1.2 ps after tenth-order multiplication.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
    [CrossRef]
  2. K. K. Gupta, N. Onodera, K. S. Abedin, M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photon. Technol. Lett. 14, 284–286 (2002).
    [CrossRef]
  3. K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
    [CrossRef]
  4. M. Margalit, M. Orenstein, G. Eisenstein, “High-repetition-rate mode-locked Er-doped fiber lasers by harmonic injection locking,” Opt. Lett. 20, 1791–1793 (1995).
    [CrossRef] [PubMed]
  5. M. W. K. Mak, H. K. Tsang, H. F. Liu, “Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry–Perot laser and semiconductor optical amplifier,” Electron. Lett. 36, 1580–1581 (2000).
    [CrossRef]
  6. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Generation of synchronized subterahertz optical pulse-trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,” IEEE Photon. Technol. Lett. 10, 209–211 (1998).
    [CrossRef]
  7. T. Papakyriakopoulos, K. Vlachos, A. Hatzieeremidis, H. Avramopoulos, “Optical clock repetition-rate multiplier for high-speed digital optical logic circuits,” Opt. Lett. 24, 717–719 (1999).
    [CrossRef]
  8. K. K. Gupta, D. Novak, H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
    [CrossRef]
  9. P. A. Morton, R. J. Helkey, J. E. Howers, “Dynamic detuning in actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 25, 2621–2633 (1989).
    [CrossRef]
  10. Y. J. Wen, H. F. Liu, D. Novak, “Optical signal generation at millimeter-wave repetition rates using semiconductor lasers with pulsed subharmonic optical injection,” IEEE J. Quantum Electron. 37, 1183–1193 (2001).
    [CrossRef]
  11. R. Kiyan, O. Deparis, O. Pottiez, P. Megret, M. Blondel, “Stabilization of actively mode-locked Er-doped fiber lasers in the rational-harmonic frequency-doubling mode-locking regime,” Opt. Lett. 24, 1029–1031 (1999).
    [CrossRef]

2002

K. K. Gupta, N. Onodera, K. S. Abedin, M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photon. Technol. Lett. 14, 284–286 (2002).
[CrossRef]

2001

Y. J. Wen, H. F. Liu, D. Novak, “Optical signal generation at millimeter-wave repetition rates using semiconductor lasers with pulsed subharmonic optical injection,” IEEE J. Quantum Electron. 37, 1183–1193 (2001).
[CrossRef]

2000

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

M. W. K. Mak, H. K. Tsang, H. F. Liu, “Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry–Perot laser and semiconductor optical amplifier,” Electron. Lett. 36, 1580–1581 (2000).
[CrossRef]

K. K. Gupta, D. Novak, H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[CrossRef]

1999

1998

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[CrossRef]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Generation of synchronized subterahertz optical pulse-trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,” IEEE Photon. Technol. Lett. 10, 209–211 (1998).
[CrossRef]

1995

1989

P. A. Morton, R. J. Helkey, J. E. Howers, “Dynamic detuning in actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 25, 2621–2633 (1989).
[CrossRef]

Abedin, K. S.

K. K. Gupta, N. Onodera, K. S. Abedin, M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photon. Technol. Lett. 14, 284–286 (2002).
[CrossRef]

Arahira, S.

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[CrossRef]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Generation of synchronized subterahertz optical pulse-trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,” IEEE Photon. Technol. Lett. 10, 209–211 (1998).
[CrossRef]

Avramopoulos, H.

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

T. Papakyriakopoulos, K. Vlachos, A. Hatzieeremidis, H. Avramopoulos, “Optical clock repetition-rate multiplier for high-speed digital optical logic circuits,” Opt. Lett. 24, 717–719 (1999).
[CrossRef]

Blondel, M.

Deparis, O.

Eisenstein, G.

Gupta, K. K.

K. K. Gupta, N. Onodera, K. S. Abedin, M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photon. Technol. Lett. 14, 284–286 (2002).
[CrossRef]

K. K. Gupta, D. Novak, H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[CrossRef]

Hatzieeremidis, A.

Helkey, R. J.

P. A. Morton, R. J. Helkey, J. E. Howers, “Dynamic detuning in actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 25, 2621–2633 (1989).
[CrossRef]

Houbavlis, T.

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

Howers, J. E.

P. A. Morton, R. J. Helkey, J. E. Howers, “Dynamic detuning in actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 25, 2621–2633 (1989).
[CrossRef]

Hyodo, M.

K. K. Gupta, N. Onodera, K. S. Abedin, M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photon. Technol. Lett. 14, 284–286 (2002).
[CrossRef]

Kiyan, R.

Kunimatsu, D.

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Generation of synchronized subterahertz optical pulse-trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,” IEEE Photon. Technol. Lett. 10, 209–211 (1998).
[CrossRef]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[CrossRef]

Kutsuzawa, S.

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[CrossRef]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Generation of synchronized subterahertz optical pulse-trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,” IEEE Photon. Technol. Lett. 10, 209–211 (1998).
[CrossRef]

Liu, H. F.

Y. J. Wen, H. F. Liu, D. Novak, “Optical signal generation at millimeter-wave repetition rates using semiconductor lasers with pulsed subharmonic optical injection,” IEEE J. Quantum Electron. 37, 1183–1193 (2001).
[CrossRef]

M. W. K. Mak, H. K. Tsang, H. F. Liu, “Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry–Perot laser and semiconductor optical amplifier,” Electron. Lett. 36, 1580–1581 (2000).
[CrossRef]

Liu, H.-F.

K. K. Gupta, D. Novak, H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[CrossRef]

Mak, M. W. K.

M. W. K. Mak, H. K. Tsang, H. F. Liu, “Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry–Perot laser and semiconductor optical amplifier,” Electron. Lett. 36, 1580–1581 (2000).
[CrossRef]

Margalit, M.

Matsui, Y.

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[CrossRef]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Generation of synchronized subterahertz optical pulse-trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,” IEEE Photon. Technol. Lett. 10, 209–211 (1998).
[CrossRef]

Megret, P.

Morton, P. A.

P. A. Morton, R. J. Helkey, J. E. Howers, “Dynamic detuning in actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 25, 2621–2633 (1989).
[CrossRef]

Novak, D.

Y. J. Wen, H. F. Liu, D. Novak, “Optical signal generation at millimeter-wave repetition rates using semiconductor lasers with pulsed subharmonic optical injection,” IEEE J. Quantum Electron. 37, 1183–1193 (2001).
[CrossRef]

K. K. Gupta, D. Novak, H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[CrossRef]

Ogawa, Y.

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Generation of synchronized subterahertz optical pulse-trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,” IEEE Photon. Technol. Lett. 10, 209–211 (1998).
[CrossRef]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[CrossRef]

Onodera, N.

K. K. Gupta, N. Onodera, K. S. Abedin, M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photon. Technol. Lett. 14, 284–286 (2002).
[CrossRef]

Orenstein, M.

Papakyriakopoulos, T.

Pottiez, O.

Tsang, H. K.

M. W. K. Mak, H. K. Tsang, H. F. Liu, “Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry–Perot laser and semiconductor optical amplifier,” Electron. Lett. 36, 1580–1581 (2000).
[CrossRef]

Vlachos, K.

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

T. Papakyriakopoulos, K. Vlachos, A. Hatzieeremidis, H. Avramopoulos, “Optical clock repetition-rate multiplier for high-speed digital optical logic circuits,” Opt. Lett. 24, 717–719 (1999).
[CrossRef]

Wen, Y. J.

Y. J. Wen, H. F. Liu, D. Novak, “Optical signal generation at millimeter-wave repetition rates using semiconductor lasers with pulsed subharmonic optical injection,” IEEE J. Quantum Electron. 37, 1183–1193 (2001).
[CrossRef]

Zoiros, K.

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

Electron. Lett.

M. W. K. Mak, H. K. Tsang, H. F. Liu, “Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry–Perot laser and semiconductor optical amplifier,” Electron. Lett. 36, 1580–1581 (2000).
[CrossRef]

IEEE J. Quantum Electron.

K. K. Gupta, D. Novak, H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[CrossRef]

P. A. Morton, R. J. Helkey, J. E. Howers, “Dynamic detuning in actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 25, 2621–2633 (1989).
[CrossRef]

Y. J. Wen, H. F. Liu, D. Novak, “Optical signal generation at millimeter-wave repetition rates using semiconductor lasers with pulsed subharmonic optical injection,” IEEE J. Quantum Electron. 37, 1183–1193 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, Y. Ogawa, “Generation of synchronized subterahertz optical pulse-trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion,” IEEE Photon. Technol. Lett. 10, 209–211 (1998).
[CrossRef]

K. K. Gupta, N. Onodera, K. S. Abedin, M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photon. Technol. Lett. 14, 284–286 (2002).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12, 25–27 (2000).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of regenerative EDFL injection locking with a gain-switched FP-LD: Amp, microwave power amplifier; Comb, electrical pulse (comb) generator; OBPF, optical bandpass filter; OC, optical coupler; PD, photodetector; WDMs, wavelength-division multiplexing couplers.

Fig. 2
Fig. 2

Pulse-shapes of (a) an injection-locked EDFL and a gain-switched FPLD at 1 GHz and the injection-locked EDFL rational-harmonic repetition frequency multiplied at (b) 2 GHz, (c) 5 GHz, and (d) 10 GHz.

Fig. 3
Fig. 3

Pulse width (filled squares) and peak power (open circles) of the injection-locked EDFL pulse repeated at several rational-harmonic frequencies. Inset, linear relationship of the pulse width to the reciprocal square root of the repetition frequency.

Fig. 4
Fig. 4

Pulse width (open circles) and peak power (filled squares) of the injection-locked EDFL at several detuning frequencies. Inset, evolution of the EDFA pulse-shape at several detuning frequencies.

Fig. 5
Fig. 5

SSB phase noise spectra of the EDFL pulse repeated at (a) fundamental (1-GHz), (b) 10th-order multiplied harmonic (10-GHz), and (c) 20th-order multiplied harmonic (20-GHz) frequencies. Dashed curve, phase noise of the driving electronics at 1-GHz frequency. Inset, corresponding timing jitter integrated from the phase-noise density spectrum at a repetition frequency of 1 GHz.

Fig. 6
Fig. 6

Measured (a) SSB phase noise and (b) timing jitter of a fundamental injection-locked EDFL pulse train as a function of detuning frequency.

Fig. 7
Fig. 7

Detuning bandwidth and timing jitter of an injection-locked EDFL at several multiplied repetition-frequency conditions. Inset, detuning-frequency-dependent EDFL pulse width at repetition-frequencies of (a) 1 GHz, (b) 2 GHz, (c) 5 GHz, and (d) 10 GHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ ( f ) = 1 2 π f 0 ( 2 f L f H { [ L n ( f ) L n ( f ) ] / ( n 2 1 ) } d f ) 1 / 2 ,

Metrics