Abstract

A turning mirror is a key component in compact optical waveguide devices and high-density integrated optics. An improved two-step method for fabrication of high-quality, compact turning mirrors in silicon-on-insulator materials is proposed. First, inductively coupled plasma etching is applied to produce the turning mirror, which keeps the turning mirror compact; then silicon wet anisotropic etching is applied to enhance the quality of the turning mirror by of its polishing surface, correcting its orientation, and improving the verticality. The shape of the turning mirror fabricated by the two-step method is hexagonal or octagonal, matching the optical field of the rib waveguide well. A large effective mirror size to reflect light waves and reduced shrinkage of the mirror size during etching guarantee that a mirror produced by this two-step method will be more compact than previously designed mirrors.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, J. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 µm integrated-optical components,” Electron. Lett. 21, 953–954 (1985).
    [CrossRef]
  2. P. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 740–942 (1997).
    [CrossRef]
  3. X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).
  4. R. Espinola, M. Tsai, J. Yardley, R. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
    [CrossRef]
  5. Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett. 20, 2182–2184 (2003).
    [CrossRef]
  6. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [CrossRef] [PubMed]
  7. W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
    [CrossRef]
  8. K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
    [CrossRef]
  9. R. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
    [CrossRef]
  10. E. Marcatili, “Bends in optical dielectric waveguides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
    [CrossRef]
  11. C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
    [CrossRef]
  12. R. Soref, J. Schmidtchen, K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
    [CrossRef]
  13. S. P. Pogossian, L. Vescan, A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16, 1851–1853 (1998).
    [CrossRef]
  14. P. Buchmann, H. Kaufmann, “GaAs single-mode rib waveguides with reactive ion-etched totally reflecting corner mirrors,” J. Lightwave Technol. 3, 785–788 (1985).
    [CrossRef]
  15. Y. Chung, N. Dagli, “Experimental and theoretical study of turning mirrors and beam splitters with optimized waveguide structures,” Opt. Quantum Electron. 27, 395–403 (1995).
    [CrossRef]
  16. L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, D. Campi, “Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors,” IEEE Photon. Technol. Lett. 8, 1355–1357 (1996).
    [CrossRef]
  17. R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
    [CrossRef]
  18. Y. Tang, W. Wang, T. Li, Y. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 68–70 (2002).
    [CrossRef]
  19. N. Maluf, An Introduction to Microelectromechanical System Engineering (Artech House, Boston, Mass., 2000).
  20. S. Chuang, J. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69, 1132–1144 (1984).
    [CrossRef]
  21. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).
  22. S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
    [CrossRef]

2005 (1)

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

2003 (3)

R. Espinola, M. Tsai, J. Yardley, R. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett. 20, 2182–2184 (2003).
[CrossRef]

X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).

2002 (2)

R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Y. Tang, W. Wang, T. Li, Y. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 68–70 (2002).
[CrossRef]

1998 (1)

1997 (1)

P. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 740–942 (1997).
[CrossRef]

1996 (1)

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, D. Campi, “Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors,” IEEE Photon. Technol. Lett. 8, 1355–1357 (1996).
[CrossRef]

1995 (1)

Y. Chung, N. Dagli, “Experimental and theoretical study of turning mirrors and beam splitters with optimized waveguide structures,” Opt. Quantum Electron. 27, 395–403 (1995).
[CrossRef]

1993 (1)

R. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

1991 (2)

R. Soref, J. Schmidtchen, K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
[CrossRef]

1989 (1)

C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
[CrossRef]

1985 (2)

R. Soref, J. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 µm integrated-optical components,” Electron. Lett. 21, 953–954 (1985).
[CrossRef]

P. Buchmann, H. Kaufmann, “GaAs single-mode rib waveguides with reactive ion-etched totally reflecting corner mirrors,” J. Lightwave Technol. 3, 785–788 (1985).
[CrossRef]

1984 (1)

S. Chuang, J. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69, 1132–1144 (1984).
[CrossRef]

1969 (1)

E. Marcatili, “Bends in optical dielectric waveguides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
[CrossRef]

Adams, D.

C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
[CrossRef]

Ahmad, R.

R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Balestra, C. L.

S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
[CrossRef]

Buchmann, P.

P. Buchmann, H. Kaufmann, “GaAs single-mode rib waveguides with reactive ion-etched totally reflecting corner mirrors,” J. Lightwave Technol. 3, 785–788 (1985).
[CrossRef]

Cacciatore, C.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, D. Campi, “Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors,” IEEE Photon. Technol. Lett. 8, 1355–1357 (1996).
[CrossRef]

Campi, D.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, D. Campi, “Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors,” IEEE Photon. Technol. Lett. 8, 1355–1357 (1996).
[CrossRef]

Chew, W. C.

S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
[CrossRef]

Chuang, S.

S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
[CrossRef]

S. Chuang, J. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69, 1132–1144 (1984).
[CrossRef]

Chung, Y.

Y. Chung, N. Dagli, “Experimental and theoretical study of turning mirrors and beam splitters with optimized waveguide structures,” Opt. Quantum Electron. 27, 395–403 (1995).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Coppinger, F.

P. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 740–942 (1997).
[CrossRef]

Coriasso, C.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, D. Campi, “Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors,” IEEE Photon. Technol. Lett. 8, 1355–1357 (1996).
[CrossRef]

Dagli, N.

Y. Chung, N. Dagli, “Experimental and theoretical study of turning mirrors and beam splitters with optimized waveguide structures,” Opt. Quantum Electron. 27, 395–403 (1995).
[CrossRef]

Espinola, R.

R. Espinola, M. Tsai, J. Yardley, R. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Faustini, L.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, D. Campi, “Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors,” IEEE Photon. Technol. Lett. 8, 1355–1357 (1996).
[CrossRef]

Fox, K.

C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
[CrossRef]

Gamara, G.

R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Hagness, S.

A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

Hermansson, B.

C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
[CrossRef]

Herrick, R. W.

S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
[CrossRef]

Jalali, B.

P. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 740–942 (1997).
[CrossRef]

Jia, K.

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

Jiang, X.

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).

Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett. 20, 2182–2184 (2003).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Kaufmann, H.

P. Buchmann, H. Kaufmann, “GaAs single-mode rib waveguides with reactive ion-etched totally reflecting corner mirrors,” J. Lightwave Technol. 3, 785–788 (1985).
[CrossRef]

Kong, J.

S. Chuang, J. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69, 1132–1144 (1984).
[CrossRef]

Lee, S. M.

S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
[CrossRef]

Li, B.

Li, T.

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

Y. Tang, W. Wang, T. Li, Y. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 68–70 (2002).
[CrossRef]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Liu, M.

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

Lorenzo, J.

R. Soref, J. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 µm integrated-optical components,” Electron. Lett. 21, 953–954 (1985).
[CrossRef]

Mak, G.

C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
[CrossRef]

Maluf, N.

N. Maluf, An Introduction to Microelectromechanical System Engineering (Artech House, Boston, Mass., 2000).

Marcatili, E.

E. Marcatili, “Bends in optical dielectric waveguides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
[CrossRef]

Moghaddam, M.

S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
[CrossRef]

Nasir, M. A.

S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Osgood, R.

R. Espinola, M. Tsai, J. Yardley, R. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Petermann, K.

R. Soref, J. Schmidtchen, K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

Pizzuto, F.

R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Pogossian, S. P.

Qu, H.

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

Rao, H.

R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Rolland, C.

C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
[CrossRef]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Schmidtchen, J.

R. Soref, J. Schmidtchen, K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

Soref, R.

R. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

R. Soref, J. Schmidtchen, K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

R. Soref, J. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 µm integrated-optical components,” Electron. Lett. 21, 953–954 (1985).
[CrossRef]

Springthorpe, A.

C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
[CrossRef]

Stano, A.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, D. Campi, “Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors,” IEEE Photon. Technol. Lett. 8, 1355–1357 (1996).
[CrossRef]

Sun, Y.

Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett. 20, 2182–2184 (2003).
[CrossRef]

Taflove, A.

A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

Tang, Y.

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).

Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett. 20, 2182–2184 (2003).
[CrossRef]

Y. Tang, W. Wang, T. Li, Y. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 68–70 (2002).
[CrossRef]

Trinh, P.

P. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 740–942 (1997).
[CrossRef]

Tsai, M.

R. Espinola, M. Tsai, J. Yardley, R. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

Vescan, L.

Vonsovici, A.

Wang, M.

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett. 20, 2182–2184 (2003).
[CrossRef]

X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).

Wang, W.

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).

Y. Tang, W. Wang, T. Li, Y. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 68–70 (2002).
[CrossRef]

Wang, Y.

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).

Y. Tang, W. Wang, T. Li, Y. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 68–70 (2002).
[CrossRef]

Wu, Y.

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).

Yang, J.

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett. 20, 2182–2184 (2003).
[CrossRef]

X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).

Yang, Y.

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).

Yardley, J.

R. Espinola, M. Tsai, J. Yardley, R. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

Yegnanarayanan, S.

P. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 740–942 (1997).
[CrossRef]

Yevick, D.

C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
[CrossRef]

Bell Syst. Tech. J. (1)

E. Marcatili, “Bends in optical dielectric waveguides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
[CrossRef]

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett. 20, 2182–2184 (2003).
[CrossRef]

Electron. Lett. (2)

C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989).
[CrossRef]

R. Soref, J. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 µm integrated-optical components,” Electron. Lett. 21, 953–954 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref, J. Schmidtchen, K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005).
[CrossRef]

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, D. Campi, “Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors,” IEEE Photon. Technol. Lett. 8, 1355–1357 (1996).
[CrossRef]

R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Y. Tang, W. Wang, T. Li, Y. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 68–70 (2002).
[CrossRef]

R. Espinola, M. Tsai, J. Yardley, R. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

P. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 740–942 (1997).
[CrossRef]

J. Lightwave Technol. (3)

S. P. Pogossian, L. Vescan, A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16, 1851–1853 (1998).
[CrossRef]

S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991).
[CrossRef]

P. Buchmann, H. Kaufmann, “GaAs single-mode rib waveguides with reactive ion-etched totally reflecting corner mirrors,” J. Lightwave Technol. 3, 785–788 (1985).
[CrossRef]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Opt. Quantum Electron. (2)

W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004).
[CrossRef]

Y. Chung, N. Dagli, “Experimental and theoretical study of turning mirrors and beam splitters with optimized waveguide structures,” Opt. Quantum Electron. 27, 395–403 (1995).
[CrossRef]

Proc. IEEE (2)

R. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

S. Chuang, J. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69, 1132–1144 (1984).
[CrossRef]

Other (2)

A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

N. Maluf, An Introduction to Microelectromechanical System Engineering (Artech House, Boston, Mass., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Variation of the SOI-based turning mirror during one-step wet etching. (a) Original etching window at the left and top view of the etched turning mirror at the right. (b) The shape change. Left, solid lines labeled a, b, and c are the top sides of the turning mirror at three positions during wet etching. Line a is also the original position. Dotted lines, shift boundaries of the top side of the turning mirror during wet etching. The geometrical figures labeled A, B, and C are the shapes of the etched turning mirror that correspond to lines a, b, and c, respectively. d1 is the etching depth.

Fig. 2
Fig. 2

(a) SEM photo of the ICP-etched vertical mirror surface and (b) its power spectrum density.

Fig. 3
Fig. 3

Sketch of the diffraction of a plane wave by a corrugated mirror.

Fig. 4
Fig. 4

Steady-state far-field power spectrum of periodic graininess with a 1.6-µm period.

Fig. 5
Fig. 5

Photos of the etched turning mirror and its power spectrum density after ICP and KOH etching. (a) SEM photo of the etched turning mirror with the oxide layer. The related surface profile of the mirror before it has been wet etched is shown at the top left. (b) SEM photo of the etched turning mirror without the oxide layer. The related surface profile of the mirror after wet etching is shown at the top left. (c), (d) Power spectrum densities of the mirror surfaces before and after wet etching, respectively.

Fig. 6
Fig. 6

Variation of the SOI-based turning mirror in the wet-etching step of the two-step method. (a) Left, the original etching window. Right, thicker lines, top view of the turning mirror; dashed lines, intersections of {111} planes. (b) Shape change. Left, solid lines labeled by a, b, and c are the top sides of the turning mirror at three positions during wet etching. Line a is also the original position. Dotted lines, shift boundaries of the top side of the turning mirror during wet etching. The geometrical figures labeled A, B, and C are the shapes of the etched turning mirror that correspond to lines a, b, and c, respectively. d2 is the etching depth.

Fig. 7
Fig. 7

SEM photos of the turning mirrors fabricated by (a) the one-step wet-etching method and (b) the proposed two-step method. In (b) the turning mirror is integrated with the optical rib waveguide.

Fig. 8
Fig. 8

Shape change of the turning mirror in the wet-etching step of the two-step method. Here the dry-etched depth in the first step is less than the thickness of the top silicon layer of the SOI wafer. h is the thickness of the top silicon layer; d3 is the dry-etched depth. Dashed lines indicate the shape of the dry-etched turning mirror.

Fig. 9
Fig. 9

Field distribution (shown as intensity) of the optical ridge waveguide and comparison of the shapes of the turning mirrors fabricated by one-step wet etching (dashed lines) and by the two-step method (dotted lines) that have the same top side.

Fig. 10
Fig. 10

Optical loss versus size of the turning mirror for a given waveguide structure simulated by the beam-propagation method.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin ( θ i ) + sin ( θ k ) = k λ / n d ,
ν etch 1 = d 1 / t ,
ν etch 2 = d 2 / t ,

Metrics