Abstract

A direct scalar two-dimensional routine based on the method of lines is implemented to analyze the dispersion characteristics of segmented fibers. In this kind of structure, dispersion control in a simple profile is achieved by variations in the filling ratio of the coaxiallike structure.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
    [CrossRef]
  2. J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
    [CrossRef]
  3. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002), http://www.opticsexpress.org .
    [CrossRef]
  4. J. Canning, E. Buckley, K. Lyttikainen, T. Ryan, “Wavelength dependent leakage in a Fresnel-based air–silica structure optical fiber,” Opt. Commun. 205, 95–99 (2002).
    [CrossRef]
  5. M. Hisatomi, M. C. Parker, S. D. Walker, “Zone microstructure fiber for low-dispersion waveguides and coupling to photonic crystals,” Opt. Lett. 29, 1054–1056 (2004).
    [CrossRef] [PubMed]
  6. U. Rogge, R. Pregla, “Method of lines for the analysis of trip-loaded optical waveguides,” J. Opt. Soc. Am. B 8, 459–463 (1991).
    [CrossRef]
  7. V. M. Schneider, J. A. West, “Analysis of wideband dispersion slope compensating optical fibers by supermode theory,” Electron. Lett. 38, 306–307 (2002).
    [CrossRef]
  8. J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
    [CrossRef]
  9. U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
    [CrossRef]
  10. V. M. Schneider, “Analysis of passive optical structures with an adaptive set of radiation modes,” Opt. Commun. 160, 230–234 (1999).
    [CrossRef]
  11. J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978).
    [CrossRef]
  12. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

2004 (1)

2002 (3)

V. M. Schneider, J. A. West, “Analysis of wideband dispersion slope compensating optical fibers by supermode theory,” Electron. Lett. 38, 306–307 (2002).
[CrossRef]

V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002), http://www.opticsexpress.org .
[CrossRef]

J. Canning, E. Buckley, K. Lyttikainen, T. Ryan, “Wavelength dependent leakage in a Fresnel-based air–silica structure optical fiber,” Opt. Commun. 205, 95–99 (2002).
[CrossRef]

2000 (1)

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

1999 (2)

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

V. M. Schneider, “Analysis of passive optical structures with an adaptive set of radiation modes,” Opt. Commun. 160, 230–234 (1999).
[CrossRef]

1995 (1)

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

1991 (2)

U. Rogge, R. Pregla, “Method of lines for the analysis of trip-loaded optical waveguides,” J. Opt. Soc. Am. B 8, 459–463 (1991).
[CrossRef]

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

1978 (1)

J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978).
[CrossRef]

Auguste, J. L.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Blondy, J. M.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Broeng, J.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Buckley, E.

J. Canning, E. Buckley, K. Lyttikainen, T. Ryan, “Wavelength dependent leakage in a Fresnel-based air–silica structure optical fiber,” Opt. Commun. 205, 95–99 (2002).
[CrossRef]

Canning, J.

J. Canning, E. Buckley, K. Lyttikainen, T. Ryan, “Wavelength dependent leakage in a Fresnel-based air–silica structure optical fiber,” Opt. Commun. 205, 95–99 (2002).
[CrossRef]

Chapeau, M.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Chraplyvy, A. R.

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

Dussandler, B.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Fleming, J. W.

J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978).
[CrossRef]

George, A. K.

Hisatomi, M.

Jindal, R.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Knight, J. C.

Lederer, F.

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Lyttikainen, K.

J. Canning, E. Buckley, K. Lyttikainen, T. Ryan, “Wavelength dependent leakage in a Fresnel-based air–silica structure optical fiber,” Opt. Commun. 205, 95–99 (2002).
[CrossRef]

Marcou, J.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Marcuse, D.

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Monnom, G.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Omenetto, F. G.

Ostrowsky, D. B.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Pal, B. P.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Parker, M. C.

Peschel, T.

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Peschel, U.

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Pregla, R.

Ravi Kanth Kumar, V. V.

Reeves, W. H.

Rogge, U.

Russell, P. St. J.

Ryan, T.

J. Canning, E. Buckley, K. Lyttikainen, T. Ryan, “Wavelength dependent leakage in a Fresnel-based air–silica structure optical fiber,” Opt. Commun. 205, 95–99 (2002).
[CrossRef]

Schneider, V. M.

V. M. Schneider, J. A. West, “Analysis of wideband dispersion slope compensating optical fibers by supermode theory,” Electron. Lett. 38, 306–307 (2002).
[CrossRef]

V. M. Schneider, “Analysis of passive optical structures with an adaptive set of radiation modes,” Opt. Commun. 160, 230–234 (1999).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Taylor, A. J.

Thyagarajan, K.

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

Tkach, R. W.

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

Walker, S. D.

West, J. A.

V. M. Schneider, J. A. West, “Analysis of wideband dispersion slope compensating optical fibers by supermode theory,” Electron. Lett. 38, 306–307 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

U. Peschel, T. Peschel, F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Electron. Lett. (3)

J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978).
[CrossRef]

V. M. Schneider, J. A. West, “Analysis of wideband dispersion slope compensating optical fibers by supermode theory,” Electron. Lett. 38, 306–307 (2002).
[CrossRef]

J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber,” Electron. Lett. 36, 1689–1690 (2000).
[CrossRef]

J. Lightwave Technol. (1)

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

J. Canning, E. Buckley, K. Lyttikainen, T. Ryan, “Wavelength dependent leakage in a Fresnel-based air–silica structure optical fiber,” Opt. Commun. 205, 95–99 (2002).
[CrossRef]

V. M. Schneider, “Analysis of passive optical structures with an adaptive set of radiation modes,” Opt. Commun. 160, 230–234 (1999).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Opt. Lett. (1)

Other (1)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Normalized initial refractive-index profile versus radius with FR = 1.00 with a core, a depressed moat, and a ring. The normalization parameter is given by Δ = (n2nclad2)/2nclad2.

Fig. 2
Fig. 2

Refractive-index profiles of segmented fibers. The modified segmented part is filled with the refractive index of undoped silica. Four FR values are shown. a, Segmented moat; b, segmented ring; c, segmented moat and ring.

Fig. 3
Fig. 3

Chromatic dispersion versus wavelength for mode LP01 in coaxial fiber with a segmented moat as described for Fig. 2(a). Inset, corresponding dispersion slope for the cases simulated.

Fig. 4
Fig. 4

Chromatic dispersion versus wavelength for mode LP01 in coaxial fiber with a segmented ring as described for Fig. 2(b). Inset, corresponding dispersion slope for the cases simulated.

Fig. 5
Fig. 5

Chromatic dispersion versus wavelength for mode LP01 in coaxial fiber with segmented moat and ring as described for Fig. 2(c). Inset, corresponding dispersion slope for the cases simulated.

Fig. 6
Fig. 6

Effective area for mode LP01 at 1.55 µm in coaxial fiber with segmented moat, segmented ring, and segmented moat and ring versus FR as described in Fig. 2.

Fig. 7
Fig. 7

Bending loss versus radius of curvature for mode LP01 at 1.55 µm in coaxial fiber with segmented moat, segmented ring, and segmented moat and ring for several FR values as described for Fig. 2.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 Ψ z 2 + Q 2 Ψ = 0 .
Q 2 = D x x + D y y + k 0 2 × [ n 11 2 n 12 2 n 1 m 2 n 21 2 n p m 2 ] .
D x x = Kron ( Π y , D x ) ,
D y y = Kron ( D y , Π x ) ,
D x , y = 1 Δ x 2 , Δ y 2 [ 2 1 0 1 2 1 0 0 1 2 ] .
β 2 = T 1 Q 2 T .
GVD super sym ( + ) , asym ( ) = D 0 ± 1 4 κ ( 1 v 1 1 v 2 ) 2 [ ( ω ω c ) 2 4 κ 2 × ( 1 v 1 1 v 2 ) 2 + 1 ] 3 / 2 .
Δ = n 2 n clad 2 2 n clad 2 .
D = 2 π c λ 2 d 2 β d ω 2 ,
S = d D d λ ,
A eff = [ | ψ ( x , y ) | 2 d x d y ] 2 | ψ ( x , y ) | 4 d x d y .

Metrics