Abstract

The reflection and transmission characteristics of a high-birefringence fiber loop mirror (HiBi-FLM), which is composed of a standard fiber coupler and one-section or multisection high-birefringence fibers (HBFs), are analyzed and discussed in detail. Theoretical reflectivity and transmissivity expressions for HiBi-FLMs with one-, two-, and three-section HBFs were obtained. The procedure for calculating reflectivity and transmissivity for HiBi-FLMs with n-section HBFs is given. Experimental results have verified the theoretical model. The basic characteristics of the one-section HiBi-FLM when strain and high temperature are applied to HBFs were analyzed and investigated theoretically and experimentally. The experimental results are in good agreement with the theoretical analysis. Furthermore, a strain– temperature sensor that makes use of those characteristics, which is new for applications of HiBi-FLMs, has been proposed and demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription