Abstract

A thin layer of a SU-8 submicrometer pattern produced by holographic lithography was directly used as the dry-etching mask in a chemically assisted ion-beam-etching system. With optimized etching parameters, etching selectivity of 7:1 was achieved together with a smooth vertical profile. As an application, a half-wavelength retardation plate for a 1.55-µm wavelength was produced and evaluated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
    [CrossRef]
  2. F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995).
    [CrossRef] [PubMed]
  3. G. P. Nordin, P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999).
    [CrossRef] [PubMed]
  4. M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
    [CrossRef]
  5. Y. Yamashita, “Sub-0.1 µm patterning with high aspect ratio of 5 achieved by preventing pattern collapse,” Jpn. J. Appl. Phys. 35, 2385–2386 (1996).
    [CrossRef]
  6. H. Namatsu, “Supercritical drying for water-rinsed resist systems,” J. Vac. Sci. Technol. B 18, 3308–3312 (2000).
    [CrossRef]
  7. L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. 42, 2912–2917 (2003).
    [CrossRef]
  8. L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” App. Opt. 42, 5450–5456 (2003).
    [CrossRef]
  9. T. S. Yang, T. Kook, J. A. Taylor, W. Josephson, M. Spak, R. R. Dammel, “Enhanced i-line lithography using AZ BARLi coating,” in Advances in Resist Technology and Processing XIII, R. R. Kunz ed., Proc. SPIE2724, 724–737 (1996).
    [CrossRef]
  10. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
    [CrossRef]
  11. J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vac. Sci. Technol. A 15, 616–621 (1997).
    [CrossRef]
  12. W. J. Zubrzycki, G. A. Vawter, J. R. Wendt, “High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching,” J. Vac. Sci. Technol. B 17, 2740–2744 (1999).
    [CrossRef]
  13. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  14. I. Richter, P.-C. Sun, F. Xu, Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995).
    [CrossRef] [PubMed]
  15. W. Nakagawa, R.-C. Tyan, P.-C. Sun, F. Xu, Y. Fainman, “Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 18, 1072–1081 (2001).
    [CrossRef]
  16. M. P. Nezhad, C. Tsai, L. Pang, W. Nakagawa, G. Klemens, Y. Fainman, “Form birefringent retardation plates in GaAs substrates: design, fabrication, and characterization,” in Nano- and Micro-Optics for Information Systems, L. A. Eldada ed., Proc. SPIE5225, 69–77 (2003).
    [CrossRef]

2003

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. 42, 2912–2917 (2003).
[CrossRef]

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” App. Opt. 42, 5450–5456 (2003).
[CrossRef]

2001

2000

H. Namatsu, “Supercritical drying for water-rinsed resist systems,” J. Vac. Sci. Technol. B 18, 3308–3312 (2000).
[CrossRef]

1999

W. J. Zubrzycki, G. A. Vawter, J. R. Wendt, “High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching,” J. Vac. Sci. Technol. B 17, 2740–2744 (1999).
[CrossRef]

G. P. Nordin, P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999).
[CrossRef] [PubMed]

1997

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vac. Sci. Technol. A 15, 616–621 (1997).
[CrossRef]

1996

Y. Yamashita, “Sub-0.1 µm patterning with high aspect ratio of 5 achieved by preventing pattern collapse,” Jpn. J. Appl. Phys. 35, 2385–2386 (1996).
[CrossRef]

1995

1983

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

Aucoin, R. J.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
[CrossRef]

Chang, T. H.-P.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Chen, Y. J.

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vac. Sci. Technol. A 15, 616–621 (1997).
[CrossRef]

Cheng, C. C.

Dammel, R. R.

T. S. Yang, T. Kook, J. A. Taylor, W. Josephson, M. Spak, R. R. Dammel, “Enhanced i-line lithography using AZ BARLi coating,” in Advances in Resist Technology and Processing XIII, R. R. Kunz ed., Proc. SPIE2724, 724–737 (1996).
[CrossRef]

Deguzman, P. C.

Fainman, Y.

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. 42, 2912–2917 (2003).
[CrossRef]

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” App. Opt. 42, 5450–5456 (2003).
[CrossRef]

W. Nakagawa, R.-C. Tyan, P.-C. Sun, F. Xu, Y. Fainman, “Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 18, 1072–1081 (2001).
[CrossRef]

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995).
[CrossRef] [PubMed]

I. Richter, P.-C. Sun, F. Xu, Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995).
[CrossRef] [PubMed]

M. P. Nezhad, C. Tsai, L. Pang, W. Nakagawa, G. Klemens, Y. Fainman, “Form birefringent retardation plates in GaAs substrates: design, fabrication, and characterization,” in Nano- and Micro-Optics for Information Systems, L. A. Eldada ed., Proc. SPIE5225, 69–77 (2003).
[CrossRef]

Flanders, D. C.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

Fleming, R. C.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
[CrossRef]

Gaylord, T. K.

Gelorme, J. D.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Grann, E. B.

Hryniewicz, J. V.

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vac. Sci. Technol. A 15, 616–621 (1997).
[CrossRef]

Hsu, S. H.

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vac. Sci. Technol. A 15, 616–621 (1997).
[CrossRef]

Josephson, W.

T. S. Yang, T. Kook, J. A. Taylor, W. Josephson, M. Spak, R. R. Dammel, “Enhanced i-line lithography using AZ BARLi coating,” in Advances in Resist Technology and Processing XIII, R. R. Kunz ed., Proc. SPIE2724, 724–737 (1996).
[CrossRef]

Klemens, G.

M. P. Nezhad, C. Tsai, L. Pang, W. Nakagawa, G. Klemens, Y. Fainman, “Form birefringent retardation plates in GaAs substrates: design, fabrication, and characterization,” in Nano- and Micro-Optics for Information Systems, L. A. Eldada ed., Proc. SPIE5225, 69–77 (2003).
[CrossRef]

Kook, T.

T. S. Yang, T. Kook, J. A. Taylor, W. Josephson, M. Spak, R. R. Dammel, “Enhanced i-line lithography using AZ BARLi coating,” in Advances in Resist Technology and Processing XIII, R. R. Kunz ed., Proc. SPIE2724, 724–737 (1996).
[CrossRef]

LaBianca, N.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Lee, C.-H. D.

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vac. Sci. Technol. A 15, 616–621 (1997).
[CrossRef]

Lee, K. Y.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Moharam, M. G.

Nakagawa, W.

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” App. Opt. 42, 5450–5456 (2003).
[CrossRef]

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. 42, 2912–2917 (2003).
[CrossRef]

W. Nakagawa, R.-C. Tyan, P.-C. Sun, F. Xu, Y. Fainman, “Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 18, 1072–1081 (2001).
[CrossRef]

M. P. Nezhad, C. Tsai, L. Pang, W. Nakagawa, G. Klemens, Y. Fainman, “Form birefringent retardation plates in GaAs substrates: design, fabrication, and characterization,” in Nano- and Micro-Optics for Information Systems, L. A. Eldada ed., Proc. SPIE5225, 69–77 (2003).
[CrossRef]

Namatsu, H.

H. Namatsu, “Supercritical drying for water-rinsed resist systems,” J. Vac. Sci. Technol. B 18, 3308–3312 (2000).
[CrossRef]

Nezhad, M. P.

M. P. Nezhad, C. Tsai, L. Pang, W. Nakagawa, G. Klemens, Y. Fainman, “Form birefringent retardation plates in GaAs substrates: design, fabrication, and characterization,” in Nano- and Micro-Optics for Information Systems, L. A. Eldada ed., Proc. SPIE5225, 69–77 (2003).
[CrossRef]

Nordin, G. P.

Pang, L.

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. 42, 2912–2917 (2003).
[CrossRef]

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” App. Opt. 42, 5450–5456 (2003).
[CrossRef]

M. P. Nezhad, C. Tsai, L. Pang, W. Nakagawa, G. Klemens, Y. Fainman, “Form birefringent retardation plates in GaAs substrates: design, fabrication, and characterization,” in Nano- and Micro-Optics for Information Systems, L. A. Eldada ed., Proc. SPIE5225, 69–77 (2003).
[CrossRef]

Pommet, D. A.

Porkolab, G. A.

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vac. Sci. Technol. A 15, 616–621 (1997).
[CrossRef]

Richter, I.

Rishton, S. A.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Schattenburg, M. L.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
[CrossRef]

Scherer, A.

Shaw, J.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Spak, M.

T. S. Yang, T. Kook, J. A. Taylor, W. Josephson, M. Spak, R. R. Dammel, “Enhanced i-line lithography using AZ BARLi coating,” in Advances in Resist Technology and Processing XIII, R. R. Kunz ed., Proc. SPIE2724, 724–737 (1996).
[CrossRef]

Sun, P. C.

Sun, P.-C.

Taylor, J. A.

T. S. Yang, T. Kook, J. A. Taylor, W. Josephson, M. Spak, R. R. Dammel, “Enhanced i-line lithography using AZ BARLi coating,” in Advances in Resist Technology and Processing XIII, R. R. Kunz ed., Proc. SPIE2724, 724–737 (1996).
[CrossRef]

Tsai, C.

M. P. Nezhad, C. Tsai, L. Pang, W. Nakagawa, G. Klemens, Y. Fainman, “Form birefringent retardation plates in GaAs substrates: design, fabrication, and characterization,” in Nano- and Micro-Optics for Information Systems, L. A. Eldada ed., Proc. SPIE5225, 69–77 (2003).
[CrossRef]

Tyan, R. C.

Tyan, R.-C.

Vawter, G. A.

W. J. Zubrzycki, G. A. Vawter, J. R. Wendt, “High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching,” J. Vac. Sci. Technol. B 17, 2740–2744 (1999).
[CrossRef]

Wendt, J. R.

W. J. Zubrzycki, G. A. Vawter, J. R. Wendt, “High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching,” J. Vac. Sci. Technol. B 17, 2740–2744 (1999).
[CrossRef]

Xu, F.

Yamashita, Y.

Y. Yamashita, “Sub-0.1 µm patterning with high aspect ratio of 5 achieved by preventing pattern collapse,” Jpn. J. Appl. Phys. 35, 2385–2386 (1996).
[CrossRef]

Yang, T. S.

T. S. Yang, T. Kook, J. A. Taylor, W. Josephson, M. Spak, R. R. Dammel, “Enhanced i-line lithography using AZ BARLi coating,” in Advances in Resist Technology and Processing XIII, R. R. Kunz ed., Proc. SPIE2724, 724–737 (1996).
[CrossRef]

Zolgharnain, S.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Zubrzycki, W. J.

W. J. Zubrzycki, G. A. Vawter, J. R. Wendt, “High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching,” J. Vac. Sci. Technol. B 17, 2740–2744 (1999).
[CrossRef]

App. Opt.

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” App. Opt. 42, 5450–5456 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. A

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vac. Sci. Technol. A 15, 616–621 (1997).
[CrossRef]

J. Vac. Sci. Technol. B

W. J. Zubrzycki, G. A. Vawter, J. R. Wendt, “High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching,” J. Vac. Sci. Technol. B 17, 2740–2744 (1999).
[CrossRef]

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
[CrossRef]

H. Namatsu, “Supercritical drying for water-rinsed resist systems,” J. Vac. Sci. Technol. B 18, 3308–3312 (2000).
[CrossRef]

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Yamashita, “Sub-0.1 µm patterning with high aspect ratio of 5 achieved by preventing pattern collapse,” Jpn. J. Appl. Phys. 35, 2385–2386 (1996).
[CrossRef]

Opt. Eng.

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. 42, 2912–2917 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. P. Nezhad, C. Tsai, L. Pang, W. Nakagawa, G. Klemens, Y. Fainman, “Form birefringent retardation plates in GaAs substrates: design, fabrication, and characterization,” in Nano- and Micro-Optics for Information Systems, L. A. Eldada ed., Proc. SPIE5225, 69–77 (2003).
[CrossRef]

T. S. Yang, T. Kook, J. A. Taylor, W. Josephson, M. Spak, R. R. Dammel, “Enhanced i-line lithography using AZ BARLi coating,” in Advances in Resist Technology and Processing XIII, R. R. Kunz ed., Proc. SPIE2724, 724–737 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM photographs of gratings with period of 1 µm produced by holographic lithography: (a) SU-8 gratings with a thickness of approximately 1 µm, duty cycle of 0.4, and aspect ratio of 2.4 and (b) BPRS-100 resist gratings with a thickness of 0.8 µm.

Fig. 2
Fig. 2

Collapse of the SU-8 pattern: (a) 1-µm period with a thickness of 1.7 µm and aspect ratio of 3.7 and (b) 400-nm period with an aspect ratio of 3 with some SU-8 residue left on the surface.

Fig. 3
Fig. 3

SEM photographs of submicrometer gratings: (a) SU-8 mask with a 350-nm period and aspect ratio of 0.6, (b) transferred structure in GaAs with an inverse taper profile by use of the thin-layer SU-8 (a) as the dry-etching mask, (c) improved but contaminated profile, (d) smooth and vertical sidewall structure in GaAs with an aspect ratio of 4 and thickness of 950 nm.

Fig. 4
Fig. 4

RCWA-generated curve showing the effect of etch depth on the total retardation of a grating etched in GaAs at 1550 nm (n = 3.37). The nominal duty cycle and grating period are assumed to be 0.70 and 325 nm, respectively. Half-wave retardation is obtained for a grating depth of 880 nm.

Fig. 5
Fig. 5

Variation in retardation versus the substrate thickness with no antireflection coating on the back side for a grating depth of 880 nm and duty cycle of 0.70.

Fig. 6
Fig. 6

Variation in retardation of the fabricated sample versus temperature (rectangular markers) and fitted theoretical curve obtained with RCWA. The fitted grating is having a duty cycle, period, and etch depth equal to 0.71, 325 nm, and 850 nm, respectively.

Metrics