Abstract

X-pinch plasma emits subnanosecond bursts of x rays in the 3–10-keV energy range from a small source. As such, it has been used for high-resolution point-projection imaging of small, dense, rapidly changing plasmas as well as for submillimeter-thick biological samples. In addition to the effect of source size on geometric resolution, a small source size can also provide high spatial coherence of x rays, enabling the rays to be used for imaging weakly absorbing objects with excellent spatial resolution by a method called phase-contrast imaging. To determine the source size, we microfabricated gold slits and imaged them in a point-projection radiography configuration. The shape of the shadow image pattern depends on the source size and energy band of the x rays, the shape and material used for the slits, and the geometry of the experiment. Experimental results have been compared with wave-optics calculations of the expected image pattern as a function of all the parameters listed above. For example, assuming a Gaussian source distribution, an effective source size in 2.5–4.1 Å radiation (1 Å = 0.1 nm) of 1.2 ± 0.5 µm (full width at half-maximum) was determined for a 20-µm Mo wire X pinch. Characterization of the size and structure of the x-ray bursts from X pinches by the use of different wire materials and different slit structures is made.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomanskii, A. I. Samokhin, J. Ullschmied, “Wire x-pinch in a high-current diode,” Sov. Tech. Phys. Lett. 8, 456–457 (1982).
  2. D. H. Kalantar, “An experimental study of the dynamics of x-pinch and z-pinch plasmas,” Ph.D. dissertation (Cornell University, Ithaca, New York, 1993).
  3. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, D. A. Hammer, “Point-projection x-ray radiograph using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667–670 (2001).
    [CrossRef]
  4. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, D. A. Hammer, “Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics,” Phys. Plasmas 8, 1305–1318 (2001).
    [CrossRef]
  5. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
    [CrossRef]
  6. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
    [CrossRef]
  7. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 3406–3408 (1996).
    [CrossRef]
  8. A. Momose, T. Takeda, A. Yoneyama, I. Koyama, Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci. 17, 527–530 (2001).
  9. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, K. M. Chandler, D. A. Hammer, “Phase-contrast x-ray radiography using X pinch radiation,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J.-C. J. Gauthier, eds., Proc. SPIE4504, 234–239 (2001).
    [CrossRef]
  10. B. M. Song, S. A. Pikuz, T. A. Shelkovenko, D. A. Hammer, “Small size X pinch radiation source for application to phase-contrast x ray radiography of biological specimens,” IEEE Nuclear Science Medical Imaging Conference (NSS/MIC) Record (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 868–872.
  11. G. Margaritondo, G. Tromba, “Coherence-based edge diffraction sharpening of x-ray images: a simple model,” J. Appl. Phys. 85, 3406–3408 (1999).
    [CrossRef]
  12. S. A. Pikuz, B. M. Song, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “X pinch source size measurements,” in Laser-Generated and Other Laboratory X-Ray and EUV Sources, Optics, and Applications, G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khoodsary, eds., Proc. SPIE5196, 25–35 (2004).
  13. B. Henke, H. Yamada, T. Tanaka, “Pulsed plasma source spectrometry in the 80–8000-eV x-ray region,” Rev. Sci. Instrum. 54, 1311–1330 (1983).
    [CrossRef]
  14. T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, D. A. Hammer, “X pinch plasma development as a function of wire material and current pulse parameters,” IEEE Trans. Plasma Sci. 30, 567–576 (2002).
    [CrossRef]
  15. M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B. 13, 3007–3011 (1995).
    [CrossRef]
  16. B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “Focussing x-ray spectrograph with crossed dispersion,” Rev. Sci. Instrum. 74, 1954–1957 (2003).
    [CrossRef]
  17. T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
    [CrossRef]
  18. B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004).
    [CrossRef]
  19. J. Cowley, Diffraction Physics (Cambridge U. Press, Cambridge, 1966).
  20. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
    [CrossRef]
  21. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).
  22. V. Kohn, I. Snigireva, A. Snigirev, “Direct measurement of transverse coherence length of hard x rays from interference fringes,” Phys. Rev. Lett. 85, 2745–2748 (2000).
    [CrossRef] [PubMed]
  23. D. H. Kalantar, D. A. Hammer, “Observation of a stable dense core within an unstable coronal plasma in wire-initiated dense Z-pinch experiments,” Phys. Rev. Lett. 71, 3806–3809 (1993).
    [CrossRef] [PubMed]
  24. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
    [CrossRef]
  25. G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Experimental study of X-pinch dynamics,” Phys. Plasmas 22, 363–378 (1996).
  26. B. Song, “High resolution radiography using X-pinch x-ray sources,” Ph.D. dissertation (Cornell University, Ithaca, New York, 2004).

2004 (2)

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004).
[CrossRef]

2003 (1)

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “Focussing x-ray spectrograph with crossed dispersion,” Rev. Sci. Instrum. 74, 1954–1957 (2003).
[CrossRef]

2002 (1)

T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, D. A. Hammer, “X pinch plasma development as a function of wire material and current pulse parameters,” IEEE Trans. Plasma Sci. 30, 567–576 (2002).
[CrossRef]

2001 (4)

A. Momose, T. Takeda, A. Yoneyama, I. Koyama, Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci. 17, 527–530 (2001).

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, D. A. Hammer, “Point-projection x-ray radiograph using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667–670 (2001).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, D. A. Hammer, “Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics,” Phys. Plasmas 8, 1305–1318 (2001).
[CrossRef]

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

2000 (1)

V. Kohn, I. Snigireva, A. Snigirev, “Direct measurement of transverse coherence length of hard x rays from interference fringes,” Phys. Rev. Lett. 85, 2745–2748 (2000).
[CrossRef] [PubMed]

1999 (1)

G. Margaritondo, G. Tromba, “Coherence-based edge diffraction sharpening of x-ray images: a simple model,” J. Appl. Phys. 85, 3406–3408 (1999).
[CrossRef]

1996 (3)

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 3406–3408 (1996).
[CrossRef]

G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Experimental study of X-pinch dynamics,” Phys. Plasmas 22, 363–378 (1996).

1995 (3)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[CrossRef]

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B. 13, 3007–3011 (1995).
[CrossRef]

1993 (1)

D. H. Kalantar, D. A. Hammer, “Observation of a stable dense core within an unstable coronal plasma in wire-initiated dense Z-pinch experiments,” Phys. Rev. Lett. 71, 3806–3809 (1993).
[CrossRef] [PubMed]

1983 (1)

B. Henke, H. Yamada, T. Tanaka, “Pulsed plasma source spectrometry in the 80–8000-eV x-ray region,” Rev. Sci. Instrum. 54, 1311–1330 (1983).
[CrossRef]

1982 (1)

S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomanskii, A. I. Samokhin, J. Ullschmied, “Wire x-pinch in a high-current diode,” Sov. Tech. Phys. Lett. 8, 456–457 (1982).

Abdallah, J.

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

Aucoin, R. J.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B. 13, 3007–3011 (1995).
[CrossRef]

Barrett, R.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Baruchel, J.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Bland, S. N.

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).

Chandler, K. M.

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004).
[CrossRef]

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “Focussing x-ray spectrograph with crossed dispersion,” Rev. Sci. Instrum. 74, 1954–1957 (2003).
[CrossRef]

T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, D. A. Hammer, “X pinch plasma development as a function of wire material and current pulse parameters,” IEEE Trans. Plasma Sci. 30, 567–576 (2002).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, D. A. Hammer, “Point-projection x-ray radiograph using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667–670 (2001).
[CrossRef]

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, K. M. Chandler, D. A. Hammer, “Phase-contrast x-ray radiography using X pinch radiation,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J.-C. J. Gauthier, eds., Proc. SPIE4504, 234–239 (2001).
[CrossRef]

S. A. Pikuz, B. M. Song, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “X pinch source size measurements,” in Laser-Generated and Other Laboratory X-Ray and EUV Sources, Optics, and Applications, G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khoodsary, eds., Proc. SPIE5196, 25–35 (2004).

Cloetens, P.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Cowley, J.

J. Cowley, Diffraction Physics (Cambridge U. Press, Cambridge, 1966).

Davis, J.

J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[CrossRef]

Fleming, R. C.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B. 13, 3007–3011 (1995).
[CrossRef]

Fontes, C. J.

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

Gao, D.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 3406–3408 (1996).
[CrossRef]

J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[CrossRef]

Guigay, J. P.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Gureyev, T. E.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 3406–3408 (1996).
[CrossRef]

J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[CrossRef]

Hammer, D. A.

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “Focussing x-ray spectrograph with crossed dispersion,” Rev. Sci. Instrum. 74, 1954–1957 (2003).
[CrossRef]

T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, D. A. Hammer, “X pinch plasma development as a function of wire material and current pulse parameters,” IEEE Trans. Plasma Sci. 30, 567–576 (2002).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, D. A. Hammer, “Point-projection x-ray radiograph using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667–670 (2001).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, D. A. Hammer, “Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics,” Phys. Plasmas 8, 1305–1318 (2001).
[CrossRef]

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

D. H. Kalantar, D. A. Hammer, “Observation of a stable dense core within an unstable coronal plasma in wire-initiated dense Z-pinch experiments,” Phys. Rev. Lett. 71, 3806–3809 (1993).
[CrossRef] [PubMed]

S. A. Pikuz, B. M. Song, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “X pinch source size measurements,” in Laser-Generated and Other Laboratory X-Ray and EUV Sources, Optics, and Applications, G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khoodsary, eds., Proc. SPIE5196, 25–35 (2004).

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, K. M. Chandler, D. A. Hammer, “Phase-contrast x-ray radiography using X pinch radiation,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J.-C. J. Gauthier, eds., Proc. SPIE4504, 234–239 (2001).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, D. A. Hammer, “Small size X pinch radiation source for application to phase-contrast x ray radiography of biological specimens,” IEEE Nuclear Science Medical Imaging Conference (NSS/MIC) Record (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 868–872.

Henke, B.

B. Henke, H. Yamada, T. Tanaka, “Pulsed plasma source spectrometry in the 80–8000-eV x-ray region,” Rev. Sci. Instrum. 54, 1311–1330 (1983).
[CrossRef]

Itai, Y.

A. Momose, T. Takeda, A. Yoneyama, I. Koyama, Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci. 17, 527–530 (2001).

Ivanenkov, G. V.

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Experimental study of X-pinch dynamics,” Phys. Plasmas 22, 363–378 (1996).

S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomanskii, A. I. Samokhin, J. Ullschmied, “Wire x-pinch in a high-current diode,” Sov. Tech. Phys. Lett. 8, 456–457 (1982).

Kalantar, D. H.

D. H. Kalantar, D. A. Hammer, “Observation of a stable dense core within an unstable coronal plasma in wire-initiated dense Z-pinch experiments,” Phys. Rev. Lett. 71, 3806–3809 (1993).
[CrossRef] [PubMed]

D. H. Kalantar, “An experimental study of the dynamics of x-pinch and z-pinch plasmas,” Ph.D. dissertation (Cornell University, Ithaca, New York, 1993).

Kohn, V.

V. Kohn, I. Snigireva, A. Snigirev, “Direct measurement of transverse coherence length of hard x rays from interference fringes,” Phys. Rev. Lett. 85, 2745–2748 (2000).
[CrossRef] [PubMed]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Kolomanskii, A. A.

S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomanskii, A. I. Samokhin, J. Ullschmied, “Wire x-pinch in a high-current diode,” Sov. Tech. Phys. Lett. 8, 456–457 (1982).

Koyama, I.

A. Momose, T. Takeda, A. Yoneyama, I. Koyama, Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci. 17, 527–530 (2001).

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Lebedev, S. V.

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

Margaritondo, G.

G. Margaritondo, G. Tromba, “Coherence-based edge diffraction sharpening of x-ray images: a simple model,” J. Appl. Phys. 85, 3406–3408 (1999).
[CrossRef]

Mingaleev, A. R.

G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Experimental study of X-pinch dynamics,” Phys. Plasmas 22, 363–378 (1996).

Mitchell, M.

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

Mitchell, M. D.

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004).
[CrossRef]

Momose, A.

A. Momose, T. Takeda, A. Yoneyama, I. Koyama, Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci. 17, 527–530 (2001).

Pikuz, S. A.

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “Focussing x-ray spectrograph with crossed dispersion,” Rev. Sci. Instrum. 74, 1954–1957 (2003).
[CrossRef]

T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, D. A. Hammer, “X pinch plasma development as a function of wire material and current pulse parameters,” IEEE Trans. Plasma Sci. 30, 567–576 (2002).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, D. A. Hammer, “Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics,” Phys. Plasmas 8, 1305–1318 (2001).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, D. A. Hammer, “Point-projection x-ray radiograph using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667–670 (2001).
[CrossRef]

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Experimental study of X-pinch dynamics,” Phys. Plasmas 22, 363–378 (1996).

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, K. M. Chandler, D. A. Hammer, “Phase-contrast x-ray radiography using X pinch radiation,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J.-C. J. Gauthier, eds., Proc. SPIE4504, 234–239 (2001).
[CrossRef]

S. A. Pikuz, B. M. Song, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “X pinch source size measurements,” in Laser-Generated and Other Laboratory X-Ray and EUV Sources, Optics, and Applications, G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khoodsary, eds., Proc. SPIE5196, 25–35 (2004).

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, D. A. Hammer, “Small size X pinch radiation source for application to phase-contrast x ray radiography of biological specimens,” IEEE Nuclear Science Medical Imaging Conference (NSS/MIC) Record (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 868–872.

Pogany, A.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 3406–3408 (1996).
[CrossRef]

Romanova, V. M.

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Experimental study of X-pinch dynamics,” Phys. Plasmas 22, 363–378 (1996).

Samokhin, A. I.

S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomanskii, A. I. Samokhin, J. Ullschmied, “Wire x-pinch in a high-current diode,” Sov. Tech. Phys. Lett. 8, 456–457 (1982).

Schattenburg, M. L.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B. 13, 3007–3011 (1995).
[CrossRef]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Schlenker, M.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Shelkovenko, T. A.

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “Focussing x-ray spectrograph with crossed dispersion,” Rev. Sci. Instrum. 74, 1954–1957 (2003).
[CrossRef]

T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, D. A. Hammer, “X pinch plasma development as a function of wire material and current pulse parameters,” IEEE Trans. Plasma Sci. 30, 567–576 (2002).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, D. A. Hammer, “Point-projection x-ray radiograph using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667–670 (2001).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, D. A. Hammer, “Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics,” Phys. Plasmas 8, 1305–1318 (2001).
[CrossRef]

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Experimental study of X-pinch dynamics,” Phys. Plasmas 22, 363–378 (1996).

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, K. M. Chandler, D. A. Hammer, “Phase-contrast x-ray radiography using X pinch radiation,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J.-C. J. Gauthier, eds., Proc. SPIE4504, 234–239 (2001).
[CrossRef]

S. A. Pikuz, B. M. Song, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “X pinch source size measurements,” in Laser-Generated and Other Laboratory X-Ray and EUV Sources, Optics, and Applications, G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khoodsary, eds., Proc. SPIE5196, 25–35 (2004).

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, D. A. Hammer, “Small size X pinch radiation source for application to phase-contrast x ray radiography of biological specimens,” IEEE Nuclear Science Medical Imaging Conference (NSS/MIC) Record (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 868–872.

Sinars, D. B.

T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, D. A. Hammer, “X pinch plasma development as a function of wire material and current pulse parameters,” IEEE Trans. Plasma Sci. 30, 567–576 (2002).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, D. A. Hammer, “Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics,” Phys. Plasmas 8, 1305–1318 (2001).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, D. A. Hammer, “Point-projection x-ray radiograph using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667–670 (2001).
[CrossRef]

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, K. M. Chandler, D. A. Hammer, “Phase-contrast x-ray radiography using X pinch radiation,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J.-C. J. Gauthier, eds., Proc. SPIE4504, 234–239 (2001).
[CrossRef]

Skobelev, Yu.

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

Snigirev, A.

V. Kohn, I. Snigireva, A. Snigirev, “Direct measurement of transverse coherence length of hard x rays from interference fringes,” Phys. Rev. Lett. 85, 2745–2748 (2000).
[CrossRef] [PubMed]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Snigireva, I.

V. Kohn, I. Snigireva, A. Snigirev, “Direct measurement of transverse coherence length of hard x rays from interference fringes,” Phys. Rev. Lett. 85, 2745–2748 (2000).
[CrossRef] [PubMed]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Song, B.

B. Song, “High resolution radiography using X-pinch x-ray sources,” Ph.D. dissertation (Cornell University, Ithaca, New York, 2004).

Song, B. M.

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004).
[CrossRef]

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “Focussing x-ray spectrograph with crossed dispersion,” Rev. Sci. Instrum. 74, 1954–1957 (2003).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, D. A. Hammer, “Small size X pinch radiation source for application to phase-contrast x ray radiography of biological specimens,” IEEE Nuclear Science Medical Imaging Conference (NSS/MIC) Record (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 868–872.

S. A. Pikuz, B. M. Song, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “X pinch source size measurements,” in Laser-Generated and Other Laboratory X-Ray and EUV Sources, Optics, and Applications, G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khoodsary, eds., Proc. SPIE5196, 25–35 (2004).

Stevenson, A. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 3406–3408 (1996).
[CrossRef]

J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[CrossRef]

Takeda, T.

A. Momose, T. Takeda, A. Yoneyama, I. Koyama, Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci. 17, 527–530 (2001).

Tanaka, T.

B. Henke, H. Yamada, T. Tanaka, “Pulsed plasma source spectrometry in the 80–8000-eV x-ray region,” Rev. Sci. Instrum. 54, 1311–1330 (1983).
[CrossRef]

Tromba, G.

G. Margaritondo, G. Tromba, “Coherence-based edge diffraction sharpening of x-ray images: a simple model,” J. Appl. Phys. 85, 3406–3408 (1999).
[CrossRef]

Ullschmied, J.

S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomanskii, A. I. Samokhin, J. Ullschmied, “Wire x-pinch in a high-current diode,” Sov. Tech. Phys. Lett. 8, 456–457 (1982).

Wilkins, S. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 3406–3408 (1996).
[CrossRef]

J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).

Yamada, H.

B. Henke, H. Yamada, T. Tanaka, “Pulsed plasma source spectrometry in the 80–8000-eV x-ray region,” Rev. Sci. Instrum. 54, 1311–1330 (1983).
[CrossRef]

Yoneyama, A.

A. Momose, T. Takeda, A. Yoneyama, I. Koyama, Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci. 17, 527–530 (2001).

Zakharov, S. M.

S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomanskii, A. I. Samokhin, J. Ullschmied, “Wire x-pinch in a high-current diode,” Sov. Tech. Phys. Lett. 8, 456–457 (1982).

Zhang, H. L.

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

Anal. Sci. (1)

A. Momose, T. Takeda, A. Yoneyama, I. Koyama, Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci. 17, 527–530 (2001).

IEEE Trans. Nucl. Sci. (1)

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, D. A. Hammer, “X pinch plasma development as a function of wire material and current pulse parameters,” IEEE Trans. Plasma Sci. 30, 567–576 (2002).
[CrossRef]

J. Appl. Phys. (1)

G. Margaritondo, G. Tromba, “Coherence-based edge diffraction sharpening of x-ray images: a simple model,” J. Appl. Phys. 85, 3406–3408 (1999).
[CrossRef]

J. Phys. D (1)

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001).
[CrossRef]

J. Vac. Sci. Technol. B. (1)

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B. 13, 3007–3011 (1995).
[CrossRef]

Nature (2)

J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 3406–3408 (1996).
[CrossRef]

Phys. Plasmas (2)

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, D. A. Hammer, “Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics,” Phys. Plasmas 8, 1305–1318 (2001).
[CrossRef]

G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Experimental study of X-pinch dynamics,” Phys. Plasmas 22, 363–378 (1996).

Phys. Rev. Lett. (2)

V. Kohn, I. Snigireva, A. Snigirev, “Direct measurement of transverse coherence length of hard x rays from interference fringes,” Phys. Rev. Lett. 85, 2745–2748 (2000).
[CrossRef] [PubMed]

D. H. Kalantar, D. A. Hammer, “Observation of a stable dense core within an unstable coronal plasma in wire-initiated dense Z-pinch experiments,” Phys. Rev. Lett. 71, 3806–3809 (1993).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004).
[CrossRef]

Rev. Sci. Instrum. (4)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, D. A. Hammer, “Point-projection x-ray radiograph using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667–670 (2001).
[CrossRef]

B. Henke, H. Yamada, T. Tanaka, “Pulsed plasma source spectrometry in the 80–8000-eV x-ray region,” Rev. Sci. Instrum. 54, 1311–1330 (1983).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “Focussing x-ray spectrograph with crossed dispersion,” Rev. Sci. Instrum. 74, 1954–1957 (2003).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomanskii, A. I. Samokhin, J. Ullschmied, “Wire x-pinch in a high-current diode,” Sov. Tech. Phys. Lett. 8, 456–457 (1982).

Other (7)

D. H. Kalantar, “An experimental study of the dynamics of x-pinch and z-pinch plasmas,” Ph.D. dissertation (Cornell University, Ithaca, New York, 1993).

S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, K. M. Chandler, D. A. Hammer, “Phase-contrast x-ray radiography using X pinch radiation,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J.-C. J. Gauthier, eds., Proc. SPIE4504, 234–239 (2001).
[CrossRef]

B. M. Song, S. A. Pikuz, T. A. Shelkovenko, D. A. Hammer, “Small size X pinch radiation source for application to phase-contrast x ray radiography of biological specimens,” IEEE Nuclear Science Medical Imaging Conference (NSS/MIC) Record (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 868–872.

J. Cowley, Diffraction Physics (Cambridge U. Press, Cambridge, 1966).

S. A. Pikuz, B. M. Song, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “X pinch source size measurements,” in Laser-Generated and Other Laboratory X-Ray and EUV Sources, Optics, and Applications, G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khoodsary, eds., Proc. SPIE5196, 25–35 (2004).

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).

B. Song, “High resolution radiography using X-pinch x-ray sources,” Ph.D. dissertation (Cornell University, Ithaca, New York, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Right, radiographic image of a beetle. Enlarged parts of the image are shown in a and b.

Fig. 2
Fig. 2

Comparison of (a) an absorption-contrast image and (b) a phase-contrast image of the left half of a 330-µm-diameter plastic fiber with a glass core (centerline on the right-hand edge of each image), obtained with a four-wire Mo X pinch. The optical density profiles below the images (averaged in each case over the dashed box in the vertical direction) show edge enhancement near the plastic boundary in (b) but not in (a). The pixelation of the absorption-contrast image is due to its enlargement by a factor of 2.5× more from the film than the phase contrast image to match them for display.

Fig. 3
Fig. 3

Schematic diagram of the X-pinch experimental arrangement and diagnostics. The vacuum chamber, several imaging cassettes with samples, PCDs, a Rogowski coil, and oscilloscopes are shown.

Fig. 4
Fig. 4

(a) Point-projection imaging experimental arrangement. (b) Spectral sensitivity of Kodak Technical Pan film with the 12.5-µm Ti foil filter taken into account.

Fig. 5
Fig. 5

Fabrication procedure for microscale Au slits standing on a Si3N4 membrane.

Fig. 6
Fig. 6

(a) Photograph of fabricated structures with Si rim support. Four unit structures are to be clipped along the V grooves in the Si. (b) Optical micrograph of a set of slits on a Si3N4 membrane (magnification, 50×). The feature sizes are written in micrometers (1, 3, 5, 10, 20, 30, 40) beside the slits. (c) SEM image of the enlarged part of a 40-µm wide slit. The slit is made from 2.2-µm-thick electroplated Au. (d) SEM image of a 1-µm slit. The electroplated Au grew beyond the height of resist, so the top opening of the slits was decreased from its 1-µm original size to 607 nm.

Fig. 7
Fig. 7

Experimental results from a four-wire W X pinch. (a) Current trace and PCD waveform with a 12.5-µm Ti filter. (b) Radiography image obtained with a 40-µm pinhole of the radiation that passes through a 50-µm Be filter. The two images indicate different sources of radiation that are displaced from each other. (c) Radiograph of the set of slits with 6.77× magnification. The boxed portions of the images are enlarged in Fig. 8 and 9(a).

Fig. 8
Fig. 8

(a) Enlarged radiograph of the 1- and 3-µm slits from Fig. 7(c) (top row), and radiographic (middle row) and theoretical (bottom row) intensity profiles of the slits. (b) Enlarged radiograph of the 5- and 10-µm slits from Fig. 7(c), and radiographic and theoretical intensity profiles of the slits. All the radiographic distributions are normalized to the intensity peak of the 40-µm slit. The theoretical profiles in this figure were calculated at 2.5-Å wavelength for a point source.

Fig. 9
Fig. 9

(a) Enlarged radiograph of the 40-µm slit from Fig. 7(c). (b) Radiographic intensity profile of the slit. (c) Theoretical intensity profile of the slit at 3-Å wavelength for a point source. (d) Theoretical intensity profiles averaged over the 2.5–4.1-Å wavelength band for different source sizes (FWHM) of 0.8, 1.6, and 2.4 µm.

Fig. 10
Fig. 10

Experimental radiographic images (top row) optical density profiles from those images averaged over 1 mm (middle row) and the corresponding calculated diffraction patterns for a 40-µm slit for Mo, W, NiCr, and Ti X pinches. The best-fit source sizes are shown on the calculated patterns.

Fig. 11
Fig. 11

(a) Optical micrograph of 3-, 5-, 10-, 20-, and 40-µm asterisk slits fabricated with the same procedure as that shown in Fig. 5. (b) Radiograph of the 5-, 10-, and 40-µm asterisk slits for a four-wire Mo X pinch with a magnification of 3×. (c) Radiographic intensity profiles of the 5-µm slit from the top (1) and bottom (2) slit images. Different profiles indicate different x-ray source sizes. (d) Radiographic intensity profiles of the 10-µm slit from the bottom slit image as a function of orientation. The intensity profile from vertical (anode-cathode direction in the X-pinch load) slit image (3) has sharper slopes at the edges than profiles (4) and (5). This indicates asymmetry of the source and larger size in the anode-cathode direction. (e) Radiographic intensity profile of the 40-µm slit from the top slit image.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x d ) = | ( r i λ r 1 r 2 ) 1 / 2 exp [ i π λ r 2 ( 2 x x d r r 1 x 2 r 1 r x d 2 ) ] q ( x ) d x | 2 ,
I w ( x d ) = d λ A ( λ ) I ( x d ) ,
I s ( x d ) = d x s B ( x s ) I w [ x d + x s ( r 2 / r 1 ) ] ,
B ( x s ) = ( 1 / σ 2 π ) exp ( x s 2 / 2 σ 2 ) ,

Metrics