Abstract

We present a method for detecting and localizing a fluorescing tumor obscured underneath several millimeters of a multiply scattering, homogeneous medium from fluorescence measurements made above the surface. Using a statistical model of the measurement system, we develop approaches for detection by use of a binary hypothesis testing approach and localization by use of maximum-likelihood estimation. We also compute the probability of tumor detection and the Cramér–Rao lower bound for the localization estimate error, which are performance metrics that could potentially be optimized in an experimental design. We validate the methods in an experimental study involving an excised mouse tumor tagged with a new folate-indocyanine dye and obscured under a tissue-simulating lipid suspension.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).
  2. V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. Radiol. 13, 195–208 (2003).
    [PubMed]
  3. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
    [CrossRef]
  4. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
    [CrossRef] [PubMed]
  5. R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
    [CrossRef]
  6. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
    [CrossRef]
  7. J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
    [CrossRef]
  8. V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
    [CrossRef]
  9. E. Shives, Y. Xu, H. Jiang, “Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye,” Opt. Express 10, 1557–1562 (2002), www.opticsexpress.org .
    [CrossRef] [PubMed]
  10. Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28, 2070–2072 (2003).
    [CrossRef] [PubMed]
  11. I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, A. Gandjbakhche, “In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers,” Appl. Opt. 42, 3073–3080 (2003).
    [CrossRef] [PubMed]
  12. E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescent emittance,” Appl. Opt. 37, 2755–2765 (1998).
    [CrossRef]
  13. M. Pfister, B. Scholz, “Localization of fluorescent spots with space-space MUSIC for mammographylike measurement system,” J. Biomed. Opt. 9, 481–487 (2004).
    [CrossRef] [PubMed]
  14. G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997).
    [CrossRef] [PubMed]
  15. P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).
  16. T. A. Patrick, D. M. Kranz, T. A. van Dyke, E. Roy, “Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice,” J. Neuro-Oncol. 32, 111–123 (1997).
    [CrossRef]
  17. W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985).
    [CrossRef] [PubMed]
  18. W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
    [CrossRef] [PubMed]
  19. J. Selhub, W. A. Franklin, “The folate-binding protein of rat kidney. Purification, properties, and cellular distribution,” J. Biol. Chem. 259, 6601–6606 (1984).
    [PubMed]
  20. M. D. Kennedy, K. Jallad, J. Lu, P. S. Low, D. Ben-Amotz, “Evaluation of folate conjugate uptake and transport by the choroid plexus of mice,” Pharm. Res. 20, 714–719 (2003).
    [CrossRef] [PubMed]
  21. S. D. Weitman, K. M. Frazier, B. A. Kamen, “The folate receptor in central nervous system malignancies of childhood,” J. Neuro-Oncol. 21, 107–112 (1994).
    [CrossRef]
  22. C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996).
    [PubMed]
  23. S. D. Konda, M. Aref, M. Brechbiel, E. C. Wiener, “Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress,” Invest. Radiol. 35, 50–57 (2000).
    [CrossRef] [PubMed]
  24. M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” J. Biomed. Opt. 8, 636–641 (2003).
    [CrossRef] [PubMed]
  25. C.-H. Tung, Y. Lin, W. K. Moon, R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 3, 784–786 (2002).
    [CrossRef] [PubMed]
  26. A. J. Devaney, G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography,” IEEE Trans. Signal Process. 39, 672–682 (1991).
    [CrossRef]
  27. J. C. Ye, Y. Bresler, P. Moulin, “Cramér–Rao bounds for 2-D target shape estimation in nonlinear inverse scattering problems with application to passive radar,” IEEE Trans. Antennas Propag. 49, 771–783 (2001).
    [CrossRef]
  28. G. Boverman, “Modeling and nonlinear inversion for frequency domain diffuse optical tomography,” Master’s thesis (Northeastern University, Boston, Mass., 2003).
  29. E. L. Miller, A. S. Willsky, “Multiscale, statistical anomaly detection analysis and algorithms for linearized inverse scattering problems,” Multidimens. Syst. Signal Process. 8, 151–184 (1995).
    [CrossRef]
  30. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
    [CrossRef] [PubMed]
  31. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
    [CrossRef] [PubMed]
  32. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  33. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  34. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  35. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
    [CrossRef] [PubMed]
  36. J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
    [CrossRef] [PubMed]
  37. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  38. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  39. K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).
  40. J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
    [CrossRef]
  41. J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
    [CrossRef]
  42. H. L. van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968), Part I.
  43. L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, New York, 1990).
  44. J. Luo, M. Smith, D. A. Lantrip, S. Wang, P. L. Fuchs, “Efficient synthesis of pyrofolic acid and pteroyl A azide, reagents for the production of carboxyl differentiated derivatives of folic acid,” J. Am. Chem. Soc. 119, 10004–10013 (1997).
    [CrossRef]
  45. S. Achilefu, R. Dorshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
    [CrossRef] [PubMed]
  46. G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
    [CrossRef] [PubMed]
  47. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  48. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  49. A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999).
    [CrossRef]
  50. B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).
  51. M. G. Erickson, J. S. Reynolds, K. J. Webb, “Comparison of sensitivity for single and dual interfering source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
    [CrossRef]
  52. R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
    [CrossRef] [PubMed]
  53. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

2004 (3)

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
[CrossRef]

M. Pfister, B. Scholz, “Localization of fluorescent spots with space-space MUSIC for mammographylike measurement system,” J. Biomed. Opt. 9, 481–487 (2004).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

2003 (6)

Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28, 2070–2072 (2003).
[CrossRef] [PubMed]

I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, A. Gandjbakhche, “In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers,” Appl. Opt. 42, 3073–3080 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. Radiol. 13, 195–208 (2003).
[PubMed]

M. D. Kennedy, K. Jallad, J. Lu, P. S. Low, D. Ben-Amotz, “Evaluation of folate conjugate uptake and transport by the choroid plexus of mice,” Pharm. Res. 20, 714–719 (2003).
[CrossRef] [PubMed]

M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” J. Biomed. Opt. 8, 636–641 (2003).
[CrossRef] [PubMed]

2002 (2)

C.-H. Tung, Y. Lin, W. K. Moon, R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 3, 784–786 (2002).
[CrossRef] [PubMed]

E. Shives, Y. Xu, H. Jiang, “Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye,” Opt. Express 10, 1557–1562 (2002), www.opticsexpress.org .
[CrossRef] [PubMed]

2001 (5)

J. C. Ye, Y. Bresler, P. Moulin, “Cramér–Rao bounds for 2-D target shape estimation in nonlinear inverse scattering problems with application to passive radar,” IEEE Trans. Antennas Propag. 49, 771–783 (2001).
[CrossRef]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
[CrossRef]

2000 (4)

S. D. Konda, M. Aref, M. Brechbiel, E. C. Wiener, “Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress,” Invest. Radiol. 35, 50–57 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

S. Achilefu, R. Dorshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

1999 (3)

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (8)

G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997).
[CrossRef] [PubMed]

T. A. Patrick, D. M. Kranz, T. A. van Dyke, E. Roy, “Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice,” J. Neuro-Oncol. 32, 111–123 (1997).
[CrossRef]

J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

J. Luo, M. Smith, D. A. Lantrip, S. Wang, P. L. Fuchs, “Efficient synthesis of pyrofolic acid and pteroyl A azide, reagents for the production of carboxyl differentiated derivatives of folic acid,” J. Am. Chem. Soc. 119, 10004–10013 (1997).
[CrossRef]

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

M. G. Erickson, J. S. Reynolds, K. J. Webb, “Comparison of sensitivity for single and dual interfering source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
[CrossRef]

1996 (2)

C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996).
[PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[CrossRef]

1995 (1)

E. L. Miller, A. S. Willsky, “Multiscale, statistical anomaly detection analysis and algorithms for linearized inverse scattering problems,” Multidimens. Syst. Signal Process. 8, 151–184 (1995).
[CrossRef]

1994 (4)

S. D. Weitman, K. M. Frazier, B. A. Kamen, “The folate receptor in central nervous system malignancies of childhood,” J. Neuro-Oncol. 21, 107–112 (1994).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

1993 (1)

P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).

1991 (2)

A. J. Devaney, G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography,” IEEE Trans. Signal Process. 39, 672–682 (1991).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

1990 (1)

W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).

1985 (1)

W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985).
[CrossRef] [PubMed]

1984 (1)

J. Selhub, W. A. Franklin, “The folate-binding protein of rat kidney. Purification, properties, and cellular distribution,” J. Biol. Chem. 259, 6601–6606 (1984).
[PubMed]

1973 (1)

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Achilefu, S.

Aref, M.

S. D. Konda, M. Aref, M. Brechbiel, E. C. Wiener, “Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress,” Invest. Radiol. 35, 50–57 (2000).
[CrossRef] [PubMed]

Bagnoli, M.

G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997).
[CrossRef] [PubMed]

Ballini, J.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Barbour, R. L.

Ben-Amotz, D.

M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” J. Biomed. Opt. 8, 636–641 (2003).
[CrossRef] [PubMed]

M. D. Kennedy, K. Jallad, J. Lu, P. S. Low, D. Ben-Amotz, “Evaluation of folate conjugate uptake and transport by the choroid plexus of mice,” Pharm. Res. 20, 714–719 (2003).
[CrossRef] [PubMed]

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999).
[CrossRef]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).

Blessington, D.

Boas, D. A.

Boiocchi, M.

G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997).
[CrossRef] [PubMed]

Bouman, C. A.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).

Boverman, G.

G. Boverman, “Modeling and nonlinear inversion for frequency domain diffuse optical tomography,” Master’s thesis (Northeastern University, Boston, Mass., 2003).

Braichotte, D.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Brechbiel, M.

S. D. Konda, M. Aref, M. Brechbiel, E. C. Wiener, “Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress,” Invest. Radiol. 35, 50–57 (2000).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. Radiol. 13, 195–208 (2003).
[PubMed]

Bresler, Y.

J. C. Ye, Y. Bresler, P. Moulin, “Cramér–Rao bounds for 2-D target shape estimation in nonlinear inverse scattering problems with application to passive radar,” IEEE Trans. Antennas Propag. 49, 771–783 (2001).
[CrossRef]

Bugaj, J.

S. Achilefu, R. Dorshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Bunn, P. A.

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

Campbell, I.

P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).

Cernigoi, C.

G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997).
[CrossRef] [PubMed]

Chance, B.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Chang, J.

Chen, Y.

Cheng, S.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Chernomordik, V.

Christensen, K.

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

Cordon-Cardo, C.

W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985).
[CrossRef] [PubMed]

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

Devaney, A. J.

A. J. Devaney, G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography,” IEEE Trans. Signal Process. 39, 672–682 (1991).
[CrossRef]

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Dorshow, R.

S. Achilefu, R. Dorshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Duderstadt, J. J.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

Edwards, D.

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

Erickson, M. G.

Feistel, H.

W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).

Feng, T.-C.

Foster, T. H.

Franklin, W. A.

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

J. Selhub, W. A. Franklin, “The folate-binding protein of rat kidney. Purification, properties, and cellular distribution,” J. Biol. Chem. 259, 6601–6606 (1984).
[PubMed]

Frazier, K. M.

S. D. Weitman, K. M. Frazier, B. A. Kamen, “The folate receptor in central nervous system malignancies of childhood,” J. Neuro-Oncol. 21, 107–112 (1994).
[CrossRef]

Fuchs, P. L.

J. Luo, M. Smith, D. A. Lantrip, S. Wang, P. L. Fuchs, “Efficient synthesis of pyrofolic acid and pteroyl A azide, reagents for the production of carboxyl differentiated derivatives of folic acid,” J. Am. Chem. Soc. 119, 10004–10013 (1997).
[CrossRef]

Gallo, A.

G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997).
[CrossRef] [PubMed]

Gandjbakhche, A.

Gannot, G.

Gannot, I.

Garashi, A.

Garin-Chesa, P.

P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).

Giambattistelli, E.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

Gift, A. D.

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999).
[CrossRef]

Graber, H. L.

Green, M. A.

C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996).
[PubMed]

Haber, K. S.

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999).
[CrossRef]

Hale, G. M.

Hamilton, L. J.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

Haskell, R. C.

Hedderich, H. G.

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

Hull, E. L.

Hutchinson, C. L.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Intes, X.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

Jager, W.

W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).

Jallad, K.

M. D. Kennedy, K. Jallad, J. Lu, P. S. Low, D. Ben-Amotz, “Evaluation of folate conjugate uptake and transport by the choroid plexus of mice,” Pharm. Res. 20, 714–719 (2003).
[CrossRef] [PubMed]

Jallad, K. N.

M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” J. Biomed. Opt. 8, 636–641 (2003).
[CrossRef] [PubMed]

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).

Jiang, H.

Kamen, B. A.

S. D. Weitman, K. M. Frazier, B. A. Kamen, “The folate receptor in central nervous system malignancies of childhood,” J. Neuro-Oncol. 21, 107–112 (1994).
[CrossRef]

Kennedy, M. D.

M. D. Kennedy, K. Jallad, J. Lu, P. S. Low, D. Ben-Amotz, “Evaluation of folate conjugate uptake and transport by the choroid plexus of mice,” Pharm. Res. 20, 714–719 (2003).
[CrossRef] [PubMed]

M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” J. Biomed. Opt. 8, 636–641 (2003).
[CrossRef] [PubMed]

K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).

Kolhouse, J. F.

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

Konda, S. D.

S. D. Konda, M. Aref, M. Brechbiel, E. C. Wiener, “Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress,” Invest. Radiol. 35, 50–57 (2000).
[CrossRef] [PubMed]

Koulos, J. P.

W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985).
[CrossRef] [PubMed]

Kranz, D. M.

T. A. Patrick, D. M. Kranz, T. A. van Dyke, E. Roy, “Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice,” J. Neuro-Oncol. 32, 111–123 (1997).
[CrossRef]

Lang, N.

W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Lantrip, D. A.

J. Luo, M. Smith, D. A. Lantrip, S. Wang, P. L. Fuchs, “Efficient synthesis of pyrofolic acid and pteroyl A azide, reagents for the production of carboxyl differentiated derivatives of folic acid,” J. Am. Chem. Soc. 119, 10004–10013 (1997).
[CrossRef]

LaPlant, F. P.

Lee, R. J.

C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996).
[PubMed]

Lewis, J. L.

P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).

W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985).
[CrossRef] [PubMed]

Li, H.

Li, X. D.

Lin, Y.

C.-H. Tung, Y. Lin, W. K. Moon, R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 3, 784–786 (2002).
[CrossRef] [PubMed]

Liu, Q.

Lopez, G.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Low, P. S.

M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” J. Biomed. Opt. 8, 636–641 (2003).
[CrossRef] [PubMed]

M. D. Kennedy, K. Jallad, J. Lu, P. S. Low, D. Ben-Amotz, “Evaluation of folate conjugate uptake and transport by the choroid plexus of mice,” Pharm. Res. 20, 714–719 (2003).
[CrossRef] [PubMed]

C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996).
[PubMed]

K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).

Lu, J.

M. D. Kennedy, K. Jallad, J. Lu, P. S. Low, D. Ben-Amotz, “Evaluation of folate conjugate uptake and transport by the choroid plexus of mice,” Pharm. Res. 20, 714–719 (2003).
[CrossRef] [PubMed]

Luo, J.

J. Luo, M. Smith, D. A. Lantrip, S. Wang, P. L. Fuchs, “Efficient synthesis of pyrofolic acid and pteroyl A azide, reagents for the production of carboxyl differentiated derivatives of folic acid,” J. Am. Chem. Soc. 119, 10004–10013 (1997).
[CrossRef]

Ma, J.

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999).
[CrossRef]

Mathias, C. J.

C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996).
[PubMed]

McAdams, M. S.

McClain, B. L.

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999).
[CrossRef]

Millane, R. P.

Miller, E. L.

E. L. Miller, A. S. Willsky, “Multiscale, statistical anomaly detection analysis and algorithms for linearized inverse scattering problems,” Multidimens. Syst. Signal Process. 8, 151–184 (1995).
[CrossRef]

Milstein, A. B.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).

Moes, C. J. M.

Moon, W. K.

C.-H. Tung, Y. Lin, W. K. Moon, R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 3, 784–786 (2002).
[CrossRef] [PubMed]

Moulin, P.

J. C. Ye, Y. Bresler, P. Moulin, “Cramér–Rao bounds for 2-D target shape estimation in nonlinear inverse scattering problems with application to passive radar,” IEEE Trans. Antennas Propag. 49, 771–783 (2001).
[CrossRef]

Nichols, M. G.

Ntziachristos, V.

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. Radiol. 13, 195–208 (2003).
[PubMed]

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

O’Leary, M. A.

Oettgen, H. F.

W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985).
[CrossRef] [PubMed]

Oh, S.

Old, L. J.

P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).

W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985).
[CrossRef] [PubMed]

Paterok, E. M.

W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).

Patrick, T. A.

T. A. Patrick, D. M. Kranz, T. A. van Dyke, E. Roy, “Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice,” J. Neuro-Oncol. 32, 111–123 (1997).
[CrossRef]

Patterson, M. S.

Pfister, M.

M. Pfister, B. Scholz, “Localization of fluorescent spots with space-space MUSIC for mammographylike measurement system,” J. Biomed. Opt. 9, 481–487 (2004).
[CrossRef] [PubMed]

Pifferi, A.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

Pogue, B. W.

Prahl, S. A.

Prendegrast, P.

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

Querry, M. R.

Rajagopalan, R.

S. Achilefu, R. Dorshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Rettig, W. J.

P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).

W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985).
[CrossRef] [PubMed]

Reynolds, J. S.

Ripoll, J.

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

Ronay, G.

W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).

Roy, E.

T. A. Patrick, D. M. Kranz, T. A. van Dyke, E. Roy, “Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice,” J. Neuro-Oncol. 32, 111–123 (1997).
[CrossRef]

Roy, R.

Russo, A.

G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997).
[CrossRef] [PubMed]

Saigo, P. E.

P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).

Scharf, L. L.

L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, New York, 1990).

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

Scholz, B.

M. Pfister, B. Scholz, “Localization of fluorescent spots with space-space MUSIC for mammographylike measurement system,” J. Biomed. Opt. 9, 481–487 (2004).
[CrossRef] [PubMed]

Schulz, R. B.

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

Selhub, J.

J. Selhub, W. A. Franklin, “The folate-binding protein of rat kidney. Purification, properties, and cellular distribution,” J. Biol. Chem. 259, 6601–6606 (1984).
[PubMed]

Sevick-Muraca, E. M.

R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Shives, E.

Smith, M.

J. Luo, M. Smith, D. A. Lantrip, S. Wang, P. L. Fuchs, “Efficient synthesis of pyrofolic acid and pteroyl A azide, reagents for the production of carboxyl differentiated derivatives of folic acid,” J. Am. Chem. Soc. 119, 10004–10013 (1997).
[CrossRef]

Sterenborg, H. J. C. M.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Stott, J. J.

Svaasand, L. O.

Taroni, P.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

Thompson, C. A.

Thompson, D. H.

M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” J. Biomed. Opt. 8, 636–641 (2003).
[CrossRef] [PubMed]

Toffoli, G.

G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997).
[CrossRef] [PubMed]

Torricelli, A.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

Troy, T. L.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Tsay, T.-T.

Tsihrintzis, G. A.

A. J. Devaney, G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography,” IEEE Trans. Signal Process. 39, 672–682 (1991).
[CrossRef]

Tulusan, A. H.

W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).

Tung, C.-H.

C.-H. Tung, Y. Lin, W. K. Moon, R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 3, 784–786 (2002).
[CrossRef] [PubMed]

Utke, N.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

van der Bergh, H.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

van Dyke, T. A.

T. A. Patrick, D. M. Kranz, T. A. van Dyke, E. Roy, “Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice,” J. Neuro-Oncol. 32, 111–123 (1997).
[CrossRef]

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

van Trees, H. L.

H. L. van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968), Part I.

Wagnières, G.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Waintrub, M.

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

Wang, S.

J. Luo, M. Smith, D. A. Lantrip, S. Wang, P. L. Fuchs, “Efficient synthesis of pyrofolic acid and pteroyl A azide, reagents for the production of carboxyl differentiated derivatives of folic acid,” J. Am. Chem. Soc. 119, 10004–10013 (1997).
[CrossRef]

C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996).
[PubMed]

Waters, D. J.

C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996).
[PubMed]

Webb, K. J.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

M. G. Erickson, J. S. Reynolds, K. J. Webb, “Comparison of sensitivity for single and dual interfering source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
[CrossRef]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).

Weissleder, R.

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. Radiol. 13, 195–208 (2003).
[PubMed]

C.-H. Tung, Y. Lin, W. K. Moon, R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 3, 784–786 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

Weitman, S. D.

S. D. Weitman, K. M. Frazier, B. A. Kamen, “The folate receptor in central nervous system malignancies of childhood,” J. Neuro-Oncol. 21, 107–112 (1994).
[CrossRef]

Wiener, E. C.

S. D. Konda, M. Aref, M. Brechbiel, E. C. Wiener, “Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress,” Invest. Radiol. 35, 50–57 (2000).
[CrossRef] [PubMed]

Willsky, A. S.

E. L. Miller, A. S. Willsky, “Multiscale, statistical anomaly detection analysis and algorithms for linearized inverse scattering problems,” Multidimens. Syst. Signal Process. 8, 151–184 (1995).
[CrossRef]

Wolf, F.

W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).

Woods, J.

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

Xu, Y.

Ye, J. C.

J. C. Ye, Y. Bresler, P. Moulin, “Cramér–Rao bounds for 2-D target shape estimation in nonlinear inverse scattering problems with application to passive radar,” IEEE Trans. Antennas Propag. 49, 771–783 (2001).
[CrossRef]

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[CrossRef]

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[CrossRef]

Zellweger, M.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Zhang, D.

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

Zhang, M.

Zhang, Q.

Zhang, Z. H.

Zheng, G.

Zhou, L.

Am. J. Pathol. (1)

P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).

Appl. Opt. (8)

G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997).
[CrossRef] [PubMed]

E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescent emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001).
[CrossRef]

I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, A. Gandjbakhche, “In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers,” Appl. Opt. 42, 3073–3080 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

Br. J. Cancer Suppl. (1)

W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).

ChemBioChem (1)

C.-H. Tung, Y. Lin, W. K. Moon, R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 3, 784–786 (2002).
[CrossRef] [PubMed]

Eur. Radiol. (1)

V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. Radiol. 13, 195–208 (2003).
[PubMed]

IEEE Trans. Antennas Propag. (1)

J. C. Ye, Y. Bresler, P. Moulin, “Cramér–Rao bounds for 2-D target shape estimation in nonlinear inverse scattering problems with application to passive radar,” IEEE Trans. Antennas Propag. 49, 771–783 (2001).
[CrossRef]

IEEE Trans. Image Process. (1)

J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[CrossRef]

IEEE Trans. Med. Imaging (1)

R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[CrossRef] [PubMed]

IEEE Trans. Signal Process. (1)

A. J. Devaney, G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography,” IEEE Trans. Signal Process. 39, 672–682 (1991).
[CrossRef]

Int. J. Cancer (2)

G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997).
[CrossRef] [PubMed]

W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985).
[CrossRef] [PubMed]

Int. J. Cancer Suppl. (1)

W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994).
[CrossRef] [PubMed]

Invest. Radiol. (2)

S. D. Konda, M. Aref, M. Brechbiel, E. C. Wiener, “Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress,” Invest. Radiol. 35, 50–57 (2000).
[CrossRef] [PubMed]

S. Achilefu, R. Dorshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

J. Luo, M. Smith, D. A. Lantrip, S. Wang, P. L. Fuchs, “Efficient synthesis of pyrofolic acid and pteroyl A azide, reagents for the production of carboxyl differentiated derivatives of folic acid,” J. Am. Chem. Soc. 119, 10004–10013 (1997).
[CrossRef]

J. Biol. Chem. (1)

J. Selhub, W. A. Franklin, “The folate-binding protein of rat kidney. Purification, properties, and cellular distribution,” J. Biol. Chem. 259, 6601–6606 (1984).
[PubMed]

J. Biomed. Opt. (2)

M. Pfister, B. Scholz, “Localization of fluorescent spots with space-space MUSIC for mammographylike measurement system,” J. Biomed. Opt. 9, 481–487 (2004).
[CrossRef] [PubMed]

M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” J. Biomed. Opt. 8, 636–641 (2003).
[CrossRef] [PubMed]

J. Neuro-Oncol. (2)

S. D. Weitman, K. M. Frazier, B. A. Kamen, “The folate receptor in central nervous system malignancies of childhood,” J. Neuro-Oncol. 21, 107–112 (1994).
[CrossRef]

T. A. Patrick, D. M. Kranz, T. A. van Dyke, E. Roy, “Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice,” J. Neuro-Oncol. 32, 111–123 (1997).
[CrossRef]

J. Nucl. Med. (1)

C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996).
[PubMed]

J. Opt. Soc. Am. A (5)

J. Raman Spectrosc. (1)

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999).
[CrossRef]

Multidimens. Syst. Signal Process. (1)

E. L. Miller, A. S. Willsky, “Multiscale, statistical anomaly detection analysis and algorithms for linearized inverse scattering problems,” Multidimens. Syst. Signal Process. 8, 151–184 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Pharm. Res. (1)

M. D. Kennedy, K. Jallad, J. Lu, P. S. Low, D. Ben-Amotz, “Evaluation of folate conjugate uptake and transport by the choroid plexus of mice,” Pharm. Res. 20, 714–719 (2003).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol. (3)

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

Spectroscopy (1)

B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).

Other (7)

H. L. van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968), Part I.

L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, New York, 1990).

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).

G. Boverman, “Modeling and nonlinear inversion for frequency domain diffuse optical tomography,” Master’s thesis (Northeastern University, Boston, Mass., 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Illustration of a fluorescence scan measurement, with photons migrating within the scattering tissue. (b) Semi-infinite geometry used to derive the forward model. The method of images is used to ensure that ϕ = 0 for the boundary at a distance of ls outside of the physical air–tissue interface.

Fig. 2
Fig. 2

Simulated measurement of a tumor of diameter d at depth Zdepth, with all data sets normalized to the maximum value. (a) Geometry. (b) Plot of simulated normalized intensity profile for a small tumor at different depths, with d = 2 mm. (c) Plot of the intensity profile for a large tumor at different depths, with d = 1.0 cm. (d) Superimposed plots from two different-sized tumors, showing the relative invariance to size.

Fig. 3
Fig. 3

Structural formula for folate-indocyanine.

Fig. 4
Fig. 4

Nu/nu mouse injected with folate-indocyanine, which selectively targets FRs on the tumors. The illumination is due to (a) room light, (b) 785-nm excitation, (c) 820-nm emission.

Fig. 5
Fig. 5

Schematic depictions of tumor localization experiment. (a) A tumor-bearing mouse is injected with folate-indocyanine and the excised tumor fragments are bonded to Petri dishes and covered with Intralipid and agarose. (b) The sample is scanned in a near-IR fluorescence microscope and measurements are recorded. HNF, holographic notch filter.

Fig. 6
Fig. 6

Normalized mouse tumor fluorescence intensity scans for two different Intralipid depths: (a) 0.69 cm deep and (b) 1.1 cm deep. The dashed curves show the best fit to a diffusion model with a point fluorophore.

Fig. 7
Fig. 7

Cost function versus tumor position for a mouse tumor obscured under (a) 0.69 cm and (b) 1.1 cm of Intralipid. The × symbol marks the true tumor location; the + symbol marks the estimated location.

Fig. 8
Fig. 8

Theoretical performance bounds for tumor measurement as a function of tumor depth. (a) Probability of detection for a false-alarm rate of 0.03. (b) Cramér–Rao bound for σX. (c) Cramér–Rao bound for σZ.

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

· [ D ( r ) ϕ ( r , ω ) ] [ µ a ( r ) + j ω / c ] ϕ ( r , ω ) = δ ( r r s i ) ,
· [ D x ( r ) ϕ x ( r , ω ) ] [ µ a x ( r ) + j ω / c ] ϕ x ( r , ω ) = δ ( r r s i ) ,
· [ D m ( r ) ϕ m ( r , ω ) ] [ µ a m ( r ) + j ω / c ] ϕ m ( r , ω ) = ϕ x ( r , ω ) η µ a f ( r ) 1 j ω τ ( r ) 1 + [ ω τ ( r ) ] 2 ,
r a = [ ( x x s i ) 2 + ( z z s i ) 2 ] 1 / 2 ,
r b = [ ( x x s i ) 2 + ( z + z s i + 2 l s ) 2 ] 1 / 2 .
f i ( r ) = [ exp ( k r a ) r a exp ( k r b ) r b ] 2 w ,
= f i ( r ) w ,
[ ϒ ] i i = α | y i | ,
p 0 ( y ) = 1 [ ( 2 π ) P | ϒ | ] 1 / 2 exp ( 1 2 y ϒ 1 2 ) ,
p 1 , θ ( y ) = 1 [ ( 2 π ) P | ϒ | ] 1 / 2 exp [ 1 2 y w f ( r ) ϒ 1 2 ] ,
L ( y , θ ) = h T ( θ ) y c ( θ ) ,
E 0 ( q ) = h T ( θ ) E 0 ( y )
= 0 ,
E 1 , θ ( q ) = E 1 , θ [ h T ( θ ) y ] = w 2 f T ( θ ) ϒ 1 f ( θ ) ,
σ q 2 = E 0 [ h T ( θ ) n n T h ( θ ) ]
= h T ( θ ) ϒ h ( θ ) .
P F = k P F p 0 ( q ) d q = 1 erf * ( k P F σ q ) ,
erf * ( r ) = r 1 2 π exp ( 1 2 t 2 ) d t .
k P F = σ q erf * 1 ( 1 P F ) .
P D = k P F p 1 , θ ( q ) d q
= 1 erf * ( k P F q ¯ σ q )
= 1 erf * [ erf * 1 ( 1 P F ) q ¯ σ q ] ,
θ ̂ = arg max θ p 1 , θ ( y ) .
c ( r ) = min w y w f ( r ) ϒ 1 2 .
w ( r ) = f T ( r ) ϒ 1 y y T ϒ 1 y ,
c ( r ) = y w ( r ) f ( r ) ϒ 1 2 .
r ̂ = arg min r c ( r ) ,
ŵ = w ( r ̂ ) .
J = f ( θ ) T ϒ 1 f ( θ ) ,
f ( θ ) = [ f ( r ) x f ( r ) z f ( r ) w ] T
= [ w f ( r ) x w f ( r ) z f ( r ) ] T .
α ̂ = 1 P y ŵ f ( r ̂ ) ϒ 1 2 ,
f i ( r ) = [ a i ( r ) b i ( r ) 2 ,
f i x = 2 ( a i b i ) ( a i x b i x ) ,
f i z = 2 ( a i b i ) ( a i z b i z ) ,
a i x = ( x x s i ) a i ( r a 2 + k r a 1 ) ,
a i z = ( z z s i ) a i ( r a 2 + k r a 1 ) ,
b i x = ( x x s i ) b i ( r b 2 + k r b 1 ) ,
b i z = ( z + z s i + 2 l s ) b i ( r b 2 + k r b 1 ) .

Metrics