Abstract

A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of ∼1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Richter, U. Kroth, A. Gottwald, C. Gerth, K. Tiedtke, T. Saito, I. Tassy, K. Vogler, “Metrology of pulsed radiation for 157-nm lithography,” Appl. Opt. 41, 7167–7172 (2002).
    [CrossRef] [PubMed]
  2. F. Hengstberger, ed., Absolute Radiometry (Academic, San Diego, Calif., 1989).
  3. F. Grum, R. J. Becherer, Radiometry, Vol. 1 of Optical Radiation Measurements, F. Grum, ed. (Academic, New York, 1979).
  4. W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements, F. Grum, C. J. Bartleson, eds. (Academic, New York, 1983).
  5. M. J. Weber, ed., Handbook of Optical Materials (CRC Press, Boca Raton, Fla., 2003).
  6. W. G. Driscoll, W. Vaughan, eds., Handbook of Optics (McGraw-Hill, New York, 1978).
  7. S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for UV-lasers at 193 nm,” in Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, A. Giesen, H. Weber, eds. (SPIE, Bellingham, Wash., 2003), pp. 645–655.
  8. K. Stock, S. Kück, F. Brandt, “Laserradiometrie,” PTB-Mitteilungen 113, 361 (2003).
  9. S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for excimer lasers at 193 nm and 157 nm,” in brochure for final presentation of EUREKA Project EU-2359, Instruments and Standard Test Procedures for Laser Beam and Optics Characterization–CHOCLAB II, D. Nickel, ed. (VDI Technology Center, Düsseldorf, Germany, 2003), pp. 3–11.
  10. International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, Switzerland, 1995).
  11. GUM Workbench software program by Metrodata GmbH, www.metrodata.de .
  12. K. Möstl, “Radiometrie für Wellenlängen oberhalb 200 nm,” in Kohlrausch: Praktische Physik, V. Kose, S. Wagner, eds. (Teubner, Stuttgart, Germany, 1996), pp. 514–538.
  13. K. D. Stock, H. Hofer, M. Pawlak, J. Metzdorf, “Improvements to the German national primary standard of radiant power above 200 nm,” Metrologia 35, 279–282 (1998).
    [CrossRef]
  14. K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
    [CrossRef]
  15. J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer of absolute radiometric measurements,” Metrologia 21, 147–156 (1985).
    [CrossRef]
  16. E. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
    [CrossRef]
  17. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
    [CrossRef]

2003 (1)

K. Stock, S. Kück, F. Brandt, “Laserradiometrie,” PTB-Mitteilungen 113, 361 (2003).

2002 (1)

1998 (1)

K. D. Stock, H. Hofer, M. Pawlak, J. Metzdorf, “Improvements to the German national primary standard of radiant power above 200 nm,” Metrologia 35, 279–282 (1998).
[CrossRef]

1993 (1)

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
[CrossRef]

1991 (1)

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

1985 (1)

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer of absolute radiometric measurements,” Metrologia 21, 147–156 (1985).
[CrossRef]

1983 (1)

Becherer, R. J.

F. Grum, R. J. Becherer, Radiometry, Vol. 1 of Optical Radiation Measurements, F. Grum, ed. (Academic, New York, 1979).

Brandt, F.

K. Stock, S. Kück, F. Brandt, “Laserradiometrie,” PTB-Mitteilungen 113, 361 (2003).

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for excimer lasers at 193 nm and 157 nm,” in brochure for final presentation of EUREKA Project EU-2359, Instruments and Standard Test Procedures for Laser Beam and Optics Characterization–CHOCLAB II, D. Nickel, ed. (VDI Technology Center, Düsseldorf, Germany, 2003), pp. 3–11.

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for UV-lasers at 193 nm,” in Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, A. Giesen, H. Weber, eds. (SPIE, Bellingham, Wash., 2003), pp. 645–655.

Budde, W.

W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements, F. Grum, C. J. Bartleson, eds. (Academic, New York, 1983).

Duda, C. R.

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer of absolute radiometric measurements,” Metrologia 21, 147–156 (1985).
[CrossRef]

Gerth, C.

Gottwald, A.

Grum, F.

F. Grum, R. J. Becherer, Radiometry, Vol. 1 of Optical Radiation Measurements, F. Grum, ed. (Academic, New York, 1979).

Hofer, H.

K. D. Stock, H. Hofer, M. Pawlak, J. Metzdorf, “Improvements to the German national primary standard of radiant power above 200 nm,” Metrologia 35, 279–282 (1998).
[CrossRef]

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
[CrossRef]

Key, P. J.

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer of absolute radiometric measurements,” Metrologia 21, 147–156 (1985).
[CrossRef]

Kroth, U.

Kück, S.

K. Stock, S. Kück, F. Brandt, “Laserradiometrie,” PTB-Mitteilungen 113, 361 (2003).

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for UV-lasers at 193 nm,” in Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, A. Giesen, H. Weber, eds. (SPIE, Bellingham, Wash., 2003), pp. 645–655.

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for excimer lasers at 193 nm and 157 nm,” in brochure for final presentation of EUREKA Project EU-2359, Instruments and Standard Test Procedures for Laser Beam and Optics Characterization–CHOCLAB II, D. Nickel, ed. (VDI Technology Center, Düsseldorf, Germany, 2003), pp. 3–11.

Liegmann, K.

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for excimer lasers at 193 nm and 157 nm,” in brochure for final presentation of EUREKA Project EU-2359, Instruments and Standard Test Procedures for Laser Beam and Optics Characterization–CHOCLAB II, D. Nickel, ed. (VDI Technology Center, Düsseldorf, Germany, 2003), pp. 3–11.

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for UV-lasers at 193 nm,” in Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, A. Giesen, H. Weber, eds. (SPIE, Bellingham, Wash., 2003), pp. 645–655.

Martin, J. E.

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer of absolute radiometric measurements,” Metrologia 21, 147–156 (1985).
[CrossRef]

Metzdorf, J.

K. D. Stock, H. Hofer, M. Pawlak, J. Metzdorf, “Improvements to the German national primary standard of radiant power above 200 nm,” Metrologia 35, 279–282 (1998).
[CrossRef]

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for UV-lasers at 193 nm,” in Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, A. Giesen, H. Weber, eds. (SPIE, Bellingham, Wash., 2003), pp. 645–655.

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for excimer lasers at 193 nm and 157 nm,” in brochure for final presentation of EUREKA Project EU-2359, Instruments and Standard Test Procedures for Laser Beam and Optics Characterization–CHOCLAB II, D. Nickel, ed. (VDI Technology Center, Düsseldorf, Germany, 2003), pp. 3–11.

Möstl, K.

K. Möstl, “Radiometrie für Wellenlängen oberhalb 200 nm,” in Kohlrausch: Praktische Physik, V. Kose, S. Wagner, eds. (Teubner, Stuttgart, Germany, 1996), pp. 514–538.

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for UV-lasers at 193 nm,” in Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, A. Giesen, H. Weber, eds. (SPIE, Bellingham, Wash., 2003), pp. 645–655.

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for excimer lasers at 193 nm and 157 nm,” in brochure for final presentation of EUREKA Project EU-2359, Instruments and Standard Test Procedures for Laser Beam and Optics Characterization–CHOCLAB II, D. Nickel, ed. (VDI Technology Center, Düsseldorf, Germany, 2003), pp. 3–11.

Pawlak, M.

K. D. Stock, H. Hofer, M. Pawlak, J. Metzdorf, “Improvements to the German national primary standard of radiant power above 200 nm,” Metrologia 35, 279–282 (1998).
[CrossRef]

Richter, M.

Saito, T.

Stock, K.

K. Stock, S. Kück, F. Brandt, “Laserradiometrie,” PTB-Mitteilungen 113, 361 (2003).

Stock, K. D.

K. D. Stock, H. Hofer, M. Pawlak, J. Metzdorf, “Improvements to the German national primary standard of radiant power above 200 nm,” Metrologia 35, 279–282 (1998).
[CrossRef]

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
[CrossRef]

Tassy, I.

Tiedtke, K.

Vogler, K.

Zalewski, E.

Appl. Opt. (2)

Metrologia (4)

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

K. D. Stock, H. Hofer, M. Pawlak, J. Metzdorf, “Improvements to the German national primary standard of radiant power above 200 nm,” Metrologia 35, 279–282 (1998).
[CrossRef]

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
[CrossRef]

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer of absolute radiometric measurements,” Metrologia 21, 147–156 (1985).
[CrossRef]

PTB-Mitteilungen (1)

K. Stock, S. Kück, F. Brandt, “Laserradiometrie,” PTB-Mitteilungen 113, 361 (2003).

Other (10)

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for excimer lasers at 193 nm and 157 nm,” in brochure for final presentation of EUREKA Project EU-2359, Instruments and Standard Test Procedures for Laser Beam and Optics Characterization–CHOCLAB II, D. Nickel, ed. (VDI Technology Center, Düsseldorf, Germany, 2003), pp. 3–11.

International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, Switzerland, 1995).

GUM Workbench software program by Metrodata GmbH, www.metrodata.de .

K. Möstl, “Radiometrie für Wellenlängen oberhalb 200 nm,” in Kohlrausch: Praktische Physik, V. Kose, S. Wagner, eds. (Teubner, Stuttgart, Germany, 1996), pp. 514–538.

F. Hengstberger, ed., Absolute Radiometry (Academic, San Diego, Calif., 1989).

F. Grum, R. J. Becherer, Radiometry, Vol. 1 of Optical Radiation Measurements, F. Grum, ed. (Academic, New York, 1979).

W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements, F. Grum, C. J. Bartleson, eds. (Academic, New York, 1983).

M. J. Weber, ed., Handbook of Optical Materials (CRC Press, Boca Raton, Fla., 2003).

W. G. Driscoll, W. Vaughan, eds., Handbook of Optics (McGraw-Hill, New York, 1978).

S. Kück, K. Liegmann, K. Möstl, F. Brandt, J. Metzdorf, “Laser radiometry for UV-lasers at 193 nm,” in Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, A. Giesen, H. Weber, eds. (SPIE, Bellingham, Wash., 2003), pp. 645–655.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Details of the detector cone: left, copper cone; middle, cone with Peltier element; right, cone with Peltier element and gold heat shield. (b) Schematic section through the detector. (c) Assembled standard detector LM8. (d) Schematic of the light path inside the detector cone.

Fig. 2
Fig. 2

Vacuum-compatible setup for measurements and calibrations at 157 nm: 1, laser; 2, aperture chamber; 3, monitor chamber; 3a, attached monitor; 4, detector chamber.

Fig. 3
Fig. 3

Determination of power and temperature coefficients of LM8 for a nitrogen atmosphere. Open squares, experimental data; filled triangles, values obtained by fitting the data according to Eq. (9). (a) Three-dimensional plot of electrical responsivity s as a function of electrical power P and temperature T. (b) Upper trace, projection of s(P, T) on the (s, T) plane. Lower trace, difference between experimental and fitted data.

Fig. 4
Fig. 4

Temporal evolution of temperature coefficient βT (open circles) and electrical responsivity s0 (filled squares) of standard detector LM8 (in vacuum).

Fig. 5
Fig. 5

Responsivity (in air) of the standard detector LM8. s1(157 nm), spectral responsivity from radiation calibration with LM4 at 157 nm; s2i), spectral responsivity from radiation calibration; s2i)/α(λi), intrinsic responsivity; < s2 >, mean value of s2; < s2 > α(λi), calculated spectral responsivity.

Fig. 6
Fig. 6

Calibration chain for standard detector LM8.

Tables (5)

Tables Icon

Table 1 Results of Radiation Calibration of Detector LM8 at Several Wavelengths λi in an Air Atmospherea

Tables Icon

Table 2 Parameters of Primary Standard Detector LM8 at 157 nma

Tables Icon

Table 3 Spectral Responsivities of Detector LM8 for Three Atmospheresa

Tables Icon

Table 4 Quantities Used in Equation (A1) for Determination of Absolute Spectral Responsivity s1 (157 nm) of Standard Detector LM8 at 157 nm

Tables Icon

Table 5 Uncertainty Budget for Determination of Absolute Spectral Responsivity s1 (157 nm) of Standard Detector LM8a

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α + ρ + τ = 1 ,
α = 1 ρ .
η 0 s = n 0 cos θ 0 , η 0 p = n 0 cos θ p ( nonabsorbing medium ) ,
η 1 s = n 1 * cos Θ 1 , η 1 p = n 1 * cos Θ 1 ( absorbing medium ) ,
n 1 * = n 1 ik 1 , cos Θ 1 = ( α 1 2 + β 1 2 + α 1 2 ) 1 / 2 i ( α 1 2 + β 1 2 α 1 2 ) 1 / 2 , α 1 = 1 + ( n 0 sin θ 0 n 1 2 + k 1 2 ) 2 ( k 1 2 n 1 2 ) , β 1 = 2 n 1 k 1 ( n 0 sin θ 0 n 1 2 + k 1 2 ) 2 ,
r s = η 0 s η 1 s η 0 s + η 1 s , R s = r s r s * , r p = η 0 p η 1 p η 0 p + η 1 p , R p = r p r p * ,
V = s Φ ,
s = s ( λ , Φ , T ) = s ( Φ 0 , T 0 ) α ( λ ) f ( Φ ) g ( T ) ,
s E = s E ( P 0 , T 0 ) ( 1 + β p P ) [ 1 + β T ( T 22 ° C ) ] ,
s 1 ( 157 nm , air ) = s 1 ( 157 nm , N 2 ) s el ( air ) / s el ( N 2 ) = ( 6.244 ± 0.050 ) mV / W ,
s 2 ( 157 nm , air ) = s 2 ( air ) α ( 157 nm ) = ( 6.267 ± 0.016 ) mV / W .
s 0 ( 157 nm , air ) = ( 6.256 ± 0.026 ) mV / W .
s k = s Pr * F s 0 * F a k t * F a t m * F V N * F A N * F V Pr * f T Pr * f S t * f H Pr * f β V P r * F α * F k * F H * F S * F β T * F β V , F β T = [ 1 + β T 1 / 100 * ( T 1 T 0 ) ] / [ 1 + β T / 100 * ( T T 0 ) ] ; F β V = ( 1 + β V 1 / 100 * V 1 ) / ( 1 + β V / 100 * V ) , f T P r = ( 1 + β T P r 1 / 100 * ( T 1 P r T 0 ) / [ 1 + β T P r / 100 * ( T P r T 0 ) ] , f β V P r = ( 1 + β V P r 1 / 100 * V P r 1 ) / ( 1 + β V P r / 100 * V P r ) .

Metrics