Abstract

Defocused speckle photography has long been used to measure rotations of rough surfaces. By addition of a suitably perforated mask, some measurement properties, such as range and lateral resolution, may be changed at will. In particular, the maximum measurable tilt can be significantly increased, although at the expense of poorer lateral resolution. Advantages of this compared with previously described techniques include independent tuning of speckle size and optical system aperture and greater adaptability to various measuring needs. The benefits and disadvantages of the new and old techniques are thoroughly compared.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–75.
  2. R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1989).
    [CrossRef]
  3. H. Tiziani, “A study of the use of laser speckle to measure small tilts of optically rough surfaces accurately,” Opt. Commun. 5, 271–274 (1972).
    [CrossRef]
  4. H. Tiziani, “Vibration analysis and deformation measurement,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 73–110.
    [CrossRef]
  5. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Hilger, Bristol, UK, 1991).
  6. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990).
  7. P. K. Rastogi, “Techniques of displacement and deformation measurements in speckle metrology,” in Speckle Metrology, R. R. Sirohi, ed. (Marcel Dekker, New York, 1993), pp. 41–98.
  8. D. A. Gregory, “Basic physical principles of defocused speckle photography: a tilt topology inspection technique,” Opt. Laser Technol. 8, 201–213 (1976).
    [CrossRef]
  9. D. A. Gregory, “Speckle scatter, affine geometry and tilt topology,” Opt. Commun. 20, 1–5 (1977).
    [CrossRef]
  10. D. A. Gregory, “Topological speckle and structural inspection,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 183–223.
    [CrossRef]
  11. F. P. Chiang, R. M. Juang, “Laser speckle interferometry for plate bending problems,” Appl. Opt. 15, 2199–2204 (1976).
    [CrossRef] [PubMed]
  12. A. E. Ennos, M. S. Virdee, “Laser speckle photography as an alternative to holographic interferometry fot measuring plate deformation,” Opt. Eng. 21, 478–482 (1982).
    [CrossRef]
  13. S. P. Chiang, R. M. Juang, “Vibration analysis of plate and shell by laser speckle interferometry,” Opt. Acta 23, 997–1009 (1976).
    [CrossRef]
  14. H. Schwieger, J. Banken, “Speckle photography for deformation analysis of bent plates,” Mater. Perform. 27, 153–156 (1985).
  15. M. Sjodahl, “Electronic speckle photography: measurement of in-plane strain fields through the use of defocused laser speckle,” Appl. Opt. 34, 5799–5808 (1995).
    [CrossRef] [PubMed]
  16. E. Archbold, A. E. Ennos, “Displacement measurements from double exposure laser photographs,” Opt. Acta 19, 253–271 (1978).
    [CrossRef]
  17. D. Amodio, G. B. Broggato, F. Campana, G. M. Newaz, “Digital speckle correlation for strain measurement by image analysis,” Exp. Mechanics 34, 396–402 (2003).
    [CrossRef]
  18. G. Cloud, Optical Methods of Engineering Analysis (Cambridge U. Press, New York, 1998).
  19. M. Sjodahl, L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32, 2278–2284 (1993).
    [CrossRef] [PubMed]

2003 (1)

D. Amodio, G. B. Broggato, F. Campana, G. M. Newaz, “Digital speckle correlation for strain measurement by image analysis,” Exp. Mechanics 34, 396–402 (2003).
[CrossRef]

1995 (1)

1993 (1)

1985 (1)

H. Schwieger, J. Banken, “Speckle photography for deformation analysis of bent plates,” Mater. Perform. 27, 153–156 (1985).

1982 (1)

A. E. Ennos, M. S. Virdee, “Laser speckle photography as an alternative to holographic interferometry fot measuring plate deformation,” Opt. Eng. 21, 478–482 (1982).
[CrossRef]

1978 (1)

E. Archbold, A. E. Ennos, “Displacement measurements from double exposure laser photographs,” Opt. Acta 19, 253–271 (1978).
[CrossRef]

1977 (1)

D. A. Gregory, “Speckle scatter, affine geometry and tilt topology,” Opt. Commun. 20, 1–5 (1977).
[CrossRef]

1976 (3)

F. P. Chiang, R. M. Juang, “Laser speckle interferometry for plate bending problems,” Appl. Opt. 15, 2199–2204 (1976).
[CrossRef] [PubMed]

S. P. Chiang, R. M. Juang, “Vibration analysis of plate and shell by laser speckle interferometry,” Opt. Acta 23, 997–1009 (1976).
[CrossRef]

D. A. Gregory, “Basic physical principles of defocused speckle photography: a tilt topology inspection technique,” Opt. Laser Technol. 8, 201–213 (1976).
[CrossRef]

1972 (1)

H. Tiziani, “A study of the use of laser speckle to measure small tilts of optically rough surfaces accurately,” Opt. Commun. 5, 271–274 (1972).
[CrossRef]

Amodio, D.

D. Amodio, G. B. Broggato, F. Campana, G. M. Newaz, “Digital speckle correlation for strain measurement by image analysis,” Exp. Mechanics 34, 396–402 (2003).
[CrossRef]

Archbold, E.

E. Archbold, A. E. Ennos, “Displacement measurements from double exposure laser photographs,” Opt. Acta 19, 253–271 (1978).
[CrossRef]

Banken, J.

H. Schwieger, J. Banken, “Speckle photography for deformation analysis of bent plates,” Mater. Perform. 27, 153–156 (1985).

Benckert, L. R.

Broggato, G. B.

D. Amodio, G. B. Broggato, F. Campana, G. M. Newaz, “Digital speckle correlation for strain measurement by image analysis,” Exp. Mechanics 34, 396–402 (2003).
[CrossRef]

Campana, F.

D. Amodio, G. B. Broggato, F. Campana, G. M. Newaz, “Digital speckle correlation for strain measurement by image analysis,” Exp. Mechanics 34, 396–402 (2003).
[CrossRef]

Chiang, F. P.

Chiang, S. P.

S. P. Chiang, R. M. Juang, “Vibration analysis of plate and shell by laser speckle interferometry,” Opt. Acta 23, 997–1009 (1976).
[CrossRef]

Cloud, G.

G. Cloud, Optical Methods of Engineering Analysis (Cambridge U. Press, New York, 1998).

Ennos, A. E.

A. E. Ennos, M. S. Virdee, “Laser speckle photography as an alternative to holographic interferometry fot measuring plate deformation,” Opt. Eng. 21, 478–482 (1982).
[CrossRef]

E. Archbold, A. E. Ennos, “Displacement measurements from double exposure laser photographs,” Opt. Acta 19, 253–271 (1978).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–75.

Gregory, D. A.

D. A. Gregory, “Speckle scatter, affine geometry and tilt topology,” Opt. Commun. 20, 1–5 (1977).
[CrossRef]

D. A. Gregory, “Basic physical principles of defocused speckle photography: a tilt topology inspection technique,” Opt. Laser Technol. 8, 201–213 (1976).
[CrossRef]

D. A. Gregory, “Topological speckle and structural inspection,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 183–223.
[CrossRef]

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1989).
[CrossRef]

Juang, R. M.

S. P. Chiang, R. M. Juang, “Vibration analysis of plate and shell by laser speckle interferometry,” Opt. Acta 23, 997–1009 (1976).
[CrossRef]

F. P. Chiang, R. M. Juang, “Laser speckle interferometry for plate bending problems,” Appl. Opt. 15, 2199–2204 (1976).
[CrossRef] [PubMed]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990).

Newaz, G. M.

D. Amodio, G. B. Broggato, F. Campana, G. M. Newaz, “Digital speckle correlation for strain measurement by image analysis,” Exp. Mechanics 34, 396–402 (2003).
[CrossRef]

Ogilvy, J. A.

J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Hilger, Bristol, UK, 1991).

Rastogi, P. K.

P. K. Rastogi, “Techniques of displacement and deformation measurements in speckle metrology,” in Speckle Metrology, R. R. Sirohi, ed. (Marcel Dekker, New York, 1993), pp. 41–98.

Schwieger, H.

H. Schwieger, J. Banken, “Speckle photography for deformation analysis of bent plates,” Mater. Perform. 27, 153–156 (1985).

Sjodahl, M.

Tiziani, H.

H. Tiziani, “A study of the use of laser speckle to measure small tilts of optically rough surfaces accurately,” Opt. Commun. 5, 271–274 (1972).
[CrossRef]

H. Tiziani, “Vibration analysis and deformation measurement,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 73–110.
[CrossRef]

Virdee, M. S.

A. E. Ennos, M. S. Virdee, “Laser speckle photography as an alternative to holographic interferometry fot measuring plate deformation,” Opt. Eng. 21, 478–482 (1982).
[CrossRef]

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1989).
[CrossRef]

Appl. Opt. (3)

Exp. Mechanics (1)

D. Amodio, G. B. Broggato, F. Campana, G. M. Newaz, “Digital speckle correlation for strain measurement by image analysis,” Exp. Mechanics 34, 396–402 (2003).
[CrossRef]

Mater. Perform. (1)

H. Schwieger, J. Banken, “Speckle photography for deformation analysis of bent plates,” Mater. Perform. 27, 153–156 (1985).

Opt. Acta (2)

E. Archbold, A. E. Ennos, “Displacement measurements from double exposure laser photographs,” Opt. Acta 19, 253–271 (1978).
[CrossRef]

S. P. Chiang, R. M. Juang, “Vibration analysis of plate and shell by laser speckle interferometry,” Opt. Acta 23, 997–1009 (1976).
[CrossRef]

Opt. Commun. (2)

H. Tiziani, “A study of the use of laser speckle to measure small tilts of optically rough surfaces accurately,” Opt. Commun. 5, 271–274 (1972).
[CrossRef]

D. A. Gregory, “Speckle scatter, affine geometry and tilt topology,” Opt. Commun. 20, 1–5 (1977).
[CrossRef]

Opt. Eng. (1)

A. E. Ennos, M. S. Virdee, “Laser speckle photography as an alternative to holographic interferometry fot measuring plate deformation,” Opt. Eng. 21, 478–482 (1982).
[CrossRef]

Opt. Laser Technol. (1)

D. A. Gregory, “Basic physical principles of defocused speckle photography: a tilt topology inspection technique,” Opt. Laser Technol. 8, 201–213 (1976).
[CrossRef]

Other (8)

G. Cloud, Optical Methods of Engineering Analysis (Cambridge U. Press, New York, 1998).

D. A. Gregory, “Topological speckle and structural inspection,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 183–223.
[CrossRef]

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–75.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1989).
[CrossRef]

H. Tiziani, “Vibration analysis and deformation measurement,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 73–110.
[CrossRef]

J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Hilger, Bristol, UK, 1991).

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990).

P. K. Rastogi, “Techniques of displacement and deformation measurements in speckle metrology,” in Speckle Metrology, R. R. Sirohi, ed. (Marcel Dekker, New York, 1993), pp. 41–98.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup with normal illumination and observation.

Fig. 2
Fig. 2

(a) Fringes that result from a speckle shift about one point. (b) Fringes that result from whole-field filtering.

Fig. 3
Fig. 3

MWDSP setup.

Fig. 4
Fig. 4

(a), (b) Grids of windows that let the laser light reach the object surface in (a) the rectangular and (b) the equilateral symmetries. (c), (d) Speckle patterns at the CCD detector for (c) the rectangular and (d) the equilateral arrangements.

Tables (3)

Tables Icon

Table 1 Comparison of Measuring Range and Lateral Resolution for DDSP and MWDSP

Tables Icon

Table 2 Comparison of Measuring Range and Lateral Resolution DDSP (s=δ) and MWDSP

Tables Icon

Table 3 Summary of Experimental Results of Speckle Displacement for MWDSP (Angles in Milliradians)a

Equations (63)

Equations on this page are rendered with MathJax. Learn more.

d x = 2 f β ,
d y = 2 f α ,
σ = λ ξ d x 2 + d y 2 ,
s = 1.22 λ f D .
2 γ > D d .
Γ = f 2 d F ,
F = f D ,
L d = b f
Γ = b 2 L f .
Γ Δ = b 2 f L
δ = s = 1.22 λ f D F = δ 1.22 λ ,
Γ = 1.22 b λ 2 L δ ,
Δ = 1.22 f λ δ .
d = L f b .
s = 1.22 λ f 2 a ,
δ s a 1.22 λ f 2 δ .
l = 2 γ f .
l M = 2 Γ f .
N b 4 Γ f .
g = f D d = f b 2 L F ,
g b 2 N ,
F f N L = b 2 L Γ ,
F = b 2 L Γ .
2 a N L ,
s 1.22 N λ f L = 1.22 λ f Δ
s 1.22 λ F ,
Γ DDSP b 2 L ,
0.05 f Δ DDSP ,
F = b 2 L Γ MWDSP
Δ MWDSP = f / F ,
Γ MWDSP b 2 L ,
0.05 f Δ MWDSP .
Γ Δ = b 2 f L ,
I MWDSP I DDSP = π N 2 a 2 L 2 ,
I MWDSP I DDSP = π a 2 Δ 2 = π [ ( 1.22 λ f / 2 s MWDSP ) Δ DDSP ] 2 [ ( 1.22 λ f / s DDSP ) Δ MWDSP ] 2 ,
I MWDSP I DDSP = π 4 ( s DDSP Δ DDSP s MWDSP Δ MWDSP ) 2
I MWDSP I DDSP = π 4 ( s DDSP F MWDSP s MWDSP F DDSP ) 2 ,
I MWDSP I DDSP π 4 .
I MWDSP I DDSP = π 4 ( s DDSP Γ DDSP s MWDSP Γ MWDSP ) 2 .
2 N a L s MWDSP 1.22 λ F ,
s DDSP = 1.22 λ F
1.22 λ f 2 a
b 2 L F
b 2 f N
f F
L N
b 2 f L
b 2 f L
1.22 λ f 2 a
1.22 b λ 2 L δ
b 2 f N
1.22 f λ δ
L N
b 2 f L
b 2 f L
µ ̂
σ ̂
µ ̂
σ ̂
µ ̂
σ ̂
µ ̂
σ ̂

Metrics