Abstract

A system based on a femtosecond white-light continuum and a streak camera was used for recordings of the in vivo absorption spectra of the tumor-seeking agent disulphonated aluminum phthalocyanine. Measurements for different drug doses were performed on tumor tissue (muscle-implanted adenocarcinoma) and normal muscle tissue in rats. It was found that the shape of the spectrum is tissue dependent. The peak of the absorption spectrum is blueshifted in tumor tissue as compared with the muscle. Thus the contrast in the drug-related absorption can be altered by up to a factor of 2 from the primary drug molecular-concentration contrast between normal muscle and tumor by the proper selection of the illumination wavelength.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994).
    [CrossRef] [PubMed]
  2. W. M. Star, J. Versteeg, W. van Putten, H. Marijnissen, “Wavelength dependence of hematoporphyrin derivative photodynamic treatment effects on rat ears,” Photochem. Photobiol. 52, 547–554 (1990).
    [CrossRef] [PubMed]
  3. T. J. Farrell, M. C. Olivo, M. S. Patterson, H. Wrona, B. C. Wilson, “Investigation of the dependence of tissue necrosis on irradiation wavelength and time post injection using a photodynamic threshold dose model,” in Photodynamic Therapy and Biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, eds. (Elsevier, Amsterdam, 1992), pp. 830–834.
  4. G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).
  5. C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, “Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing,” Photochem. Photobiol. 39, 365–368 (1984).
    [CrossRef] [PubMed]
  6. S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
    [CrossRef] [PubMed]
  7. S. Svanberg, J. Larsson, A. Persson, C. G. Wahlström, “Lund high-power laser facility—systems and first results,” Phys. Scr. 49, 187–197 (1994).
    [CrossRef]
  8. W. J. Jones, B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13, 657–659 (1964).
    [CrossRef]
  9. G. Hedlund, H. O. Sjögren, “Induction of transplantation immunity to rat colon carcinoma isografts by implantation of intact fetal colon tissue,” Int. J. Cancer 26, 71–73 (1980).
    [CrossRef] [PubMed]
  10. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  11. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  12. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art Of Scientific Computing (Cambridge U. Press, New York, 1992).
  13. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
    [CrossRef] [PubMed]
  14. J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L. O. Björn, “Time-resolved studies of light propagation in Crassula and Phaseolus leaves,” Photochem. Photobiol. 69, 242–247 (1999).
    [CrossRef]
  15. M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
    [CrossRef] [PubMed]
  16. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  17. M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
    [CrossRef] [PubMed]
  18. A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).
  19. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
    [CrossRef] [PubMed]
  20. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
    [CrossRef]
  21. R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
    [CrossRef] [PubMed]
  22. J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994).
    [CrossRef] [PubMed]
  23. M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994).
    [CrossRef] [PubMed]
  24. J. Moan, K. Berg, J. C. Bommer, A. Western, “Action spectra of phthalocyanines with respect to photosensitization of cells,” Photochem. Photobiol. 56, 171–175 (1992).
    [CrossRef] [PubMed]
  25. A. A. Stratonnikov, General Physics Institute, Moscow (personal communication, 2001).
  26. R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997).
    [CrossRef] [PubMed]
  27. J. Swartling, J. Svensson, O. Bengtsson, K. Terike, S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt. 44, 1934–1941 (2005).
    [CrossRef] [PubMed]
  28. M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
    [CrossRef]
  29. M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
    [CrossRef] [PubMed]
  30. H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
    [CrossRef]
  31. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
    [CrossRef]
  32. J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, “Time-resolved NIR/VIS spectroscopy for analysis of solids: pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
    [CrossRef]
  33. J. K. Ranka, R. S. Windeler, J. Stentz, “Visible continuum generation in air-silica micro structure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  34. T. A. Birks, W. J. Wadsworth, P. St. J. Russell, “Super-continuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]

2005 (1)

2002 (1)

2000 (2)

1999 (3)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L. O. Björn, “Time-resolved studies of light propagation in Crassula and Phaseolus leaves,” Photochem. Photobiol. 69, 242–247 (1999).
[CrossRef]

1998 (1)

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

1997 (3)

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
[CrossRef] [PubMed]

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

1996 (3)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

1994 (5)

J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994).
[CrossRef] [PubMed]

M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994).
[CrossRef] [PubMed]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994).
[CrossRef] [PubMed]

S. Svanberg, J. Larsson, A. Persson, C. G. Wahlström, “Lund high-power laser facility—systems and first results,” Phys. Scr. 49, 187–197 (1994).
[CrossRef]

1993 (1)

1992 (2)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

J. Moan, K. Berg, J. C. Bommer, A. Western, “Action spectra of phthalocyanines with respect to photosensitization of cells,” Photochem. Photobiol. 56, 171–175 (1992).
[CrossRef] [PubMed]

1990 (1)

W. M. Star, J. Versteeg, W. van Putten, H. Marijnissen, “Wavelength dependence of hematoporphyrin derivative photodynamic treatment effects on rat ears,” Photochem. Photobiol. 52, 547–554 (1990).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

1986 (1)

G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).

1984 (1)

C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, “Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing,” Photochem. Photobiol. 39, 365–368 (1984).
[CrossRef] [PubMed]

1980 (1)

G. Hedlund, H. O. Sjögren, “Induction of transplantation immunity to rat colon carcinoma isografts by implantation of intact fetal colon tissue,” Int. J. Cancer 26, 71–73 (1980).
[CrossRef] [PubMed]

1964 (1)

W. J. Jones, B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13, 657–659 (1964).
[CrossRef]

Abrahamsson, C.

Ambroz, M.

M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994).
[CrossRef] [PubMed]

Andersson-Engels, S.

Bengtsson, O.

Berg, K.

J. Moan, K. Berg, J. C. Bommer, A. Western, “Action spectra of phthalocyanines with respect to photosensitization of cells,” Photochem. Photobiol. 56, 171–175 (1992).
[CrossRef] [PubMed]

Berg, R.

J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L. O. Björn, “Time-resolved studies of light propagation in Crassula and Phaseolus leaves,” Photochem. Photobiol. 69, 242–247 (1999).
[CrossRef]

S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[CrossRef] [PubMed]

Birks, T. A.

Björn, L. O.

J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L. O. Björn, “Time-resolved studies of light propagation in Crassula and Phaseolus leaves,” Photochem. Photobiol. 69, 242–247 (1999).
[CrossRef]

Bommer, J. C.

J. Moan, K. Berg, J. C. Bommer, A. Western, “Action spectra of phthalocyanines with respect to photosensitization of cells,” Photochem. Photobiol. 56, 171–175 (1992).
[CrossRef] [PubMed]

Boon, T. A.

G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).

Breederveld, D.

G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).

Brown, S. B.

J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994).
[CrossRef] [PubMed]

Burns, D. M.

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

Canti, G.

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994).
[CrossRef] [PubMed]

Chance, B.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
[CrossRef]

Cruse-Sawyer, J.

J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994).
[CrossRef] [PubMed]

Diamond, K. R.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Dixon, B.

J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994).
[CrossRef] [PubMed]

Doiron, D. R.

C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, “Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing,” Photochem. Photobiol. 39, 365–368 (1984).
[CrossRef] [PubMed]

Edinca, N. E.

A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. C. Olivo, M. S. Patterson, H. Wrona, B. C. Wilson, “Investigation of the dependence of tissue necrosis on irradiation wavelength and time post injection using a photodynamic threshold dose model,” in Photodynamic Therapy and Biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, eds. (Elsevier, Amsterdam, 1992), pp. 830–834.

Feather, J. W.

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

Feng, T.-C.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art Of Scientific Computing (Cambridge U. Press, New York, 1992).

Folestad, S.

Foley, M. S. C.

M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994).
[CrossRef] [PubMed]

Foster, T. H.

Fountain, S. W.

C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, “Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing,” Photochem. Photobiol. 39, 365–368 (1984).
[CrossRef] [PubMed]

Gijsbers, G. H. M.

G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).

Gomer, C. J.

C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, “Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing,” Photochem. Photobiol. 39, 365–368 (1984).
[CrossRef] [PubMed]

Griffiths, J.

J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994).
[CrossRef] [PubMed]

Haskell, R. C.

Hayward, J. E.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Hedlund, G.

G. Hedlund, H. O. Sjögren, “Induction of transplantation immunity to rat colon carcinoma isografts by implantation of intact fetal colon tissue,” Int. J. Cancer 26, 71–73 (1980).
[CrossRef] [PubMed]

Hull, E. L.

Johansson, J.

J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, “Time-resolved NIR/VIS spectroscopy for analysis of solids: pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
[CrossRef]

J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L. O. Björn, “Time-resolved studies of light propagation in Crassula and Phaseolus leaves,” Photochem. Photobiol. 69, 242–247 (1999).
[CrossRef]

Jones, W. J.

W. J. Jones, B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13, 657–659 (1964).
[CrossRef]

Josefson, M.

Klimov, D. V.

A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).

Langelaar, J.

G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).

Larsson, J.

S. Svanberg, J. Larsson, A. Persson, C. G. Wahlström, “Lund high-power laser facility—systems and first results,” Phys. Scr. 49, 187–197 (1994).
[CrossRef]

Linkov, K. G.

A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).

Loschenov, V. B.

A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).

Luckjanets, E. A.

A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).

MacRobert, A. J.

M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994).
[CrossRef] [PubMed]

Marijnissen, H.

W. M. Star, J. Versteeg, W. van Putten, H. Marijnissen, “Wavelength dependence of hematoporphyrin derivative photodynamic treatment effects on rat ears,” Photochem. Photobiol. 52, 547–554 (1990).
[CrossRef] [PubMed]

McAdams, M. S.

Meerovich, G. A.

A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).

Miwa, M.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
[CrossRef]

Moan, J.

J. Moan, K. Berg, J. C. Bommer, A. Western, “Action spectra of phthalocyanines with respect to photosensitization of cells,” Photochem. Photobiol. 56, 171–175 (1992).
[CrossRef] [PubMed]

Morgan, J.

M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994).
[CrossRef] [PubMed]

Musolino, M.

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994).
[CrossRef] [PubMed]

Nichols, M. G.

Nishimura, G.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

Oda, M.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

Olivo, M. C.

T. J. Farrell, M. C. Olivo, M. S. Patterson, H. Wrona, B. C. Wilson, “Investigation of the dependence of tissue necrosis on irradiation wavelength and time post injection using a photodynamic threshold dose model,” in Photodynamic Therapy and Biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, eds. (Elsevier, Amsterdam, 1992), pp. 830–834.

Patterson, M. S.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

T. J. Farrell, M. C. Olivo, M. S. Patterson, H. Wrona, B. C. Wilson, “Investigation of the dependence of tissue necrosis on irradiation wavelength and time post injection using a photodynamic threshold dose model,” in Photodynamic Therapy and Biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, eds. (Elsevier, Amsterdam, 1992), pp. 830–834.

Persson, A.

S. Svanberg, J. Larsson, A. Persson, C. G. Wahlström, “Lund high-power laser facility—systems and first results,” Phys. Scr. 49, 187–197 (1994).
[CrossRef]

S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[CrossRef] [PubMed]

Phillips, D.

M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994).
[CrossRef] [PubMed]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L. O. Björn, “Time-resolved studies of light propagation in Crassula and Phaseolus leaves,” Photochem. Photobiol. 69, 242–247 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art Of Scientific Computing (Cambridge U. Press, New York, 1992).

Pushka, W.

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

Ranka, J. K.

Razum, N. J.

C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, “Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing,” Photochem. Photobiol. 39, 365–368 (1984).
[CrossRef] [PubMed]

Rettschnick, R. P. H.

G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).

Rucker, N.

C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, “Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing,” Photochem. Photobiol. 39, 365–368 (1984).
[CrossRef] [PubMed]

Rumbles, G.

M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994).
[CrossRef] [PubMed]

Russell, P. St. J.

Schofield, J.

J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994).
[CrossRef] [PubMed]

Sjögren, H. O.

G. Hedlund, H. O. Sjögren, “Induction of transplantation immunity to rat colon carcinoma isografts by implantation of intact fetal colon tissue,” Int. J. Cancer 26, 71–73 (1980).
[CrossRef] [PubMed]

Sparén, A.

Star, W. M.

W. M. Star, J. Versteeg, W. van Putten, H. Marijnissen, “Wavelength dependence of hematoporphyrin derivative photodynamic treatment effects on rat ears,” Photochem. Photobiol. 52, 547–554 (1990).
[CrossRef] [PubMed]

Stentz, J.

Stoicheff, B. P.

W. J. Jones, B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13, 657–659 (1964).
[CrossRef]

Stratonnikov, A. A.

A. A. Stratonnikov, General Physics Institute, Moscow (personal communication, 2001).

A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).

Svaasand, L. O.

Svanberg, S.

J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, “Time-resolved NIR/VIS spectroscopy for analysis of solids: pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
[CrossRef]

J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L. O. Björn, “Time-resolved studies of light propagation in Crassula and Phaseolus leaves,” Photochem. Photobiol. 69, 242–247 (1999).
[CrossRef]

S. Svanberg, J. Larsson, A. Persson, C. G. Wahlström, “Lund high-power laser facility—systems and first results,” Phys. Scr. 49, 187–197 (1994).
[CrossRef]

S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[CrossRef] [PubMed]

Svensson, J.

Swartling, J.

Tamura, M.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994).
[CrossRef] [PubMed]

Terike, K.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art Of Scientific Computing (Cambridge U. Press, New York, 1992).

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T.-T.

Tsuchiya, Y.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

Ueda, Y.

M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
[CrossRef]

Urakami, T.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

Vakulovskaya, E. G.

A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994).
[CrossRef] [PubMed]

van Gemert, M. J. C.

G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).

van Putten, W.

W. M. Star, J. Versteeg, W. van Putten, H. Marijnissen, “Wavelength dependence of hematoporphyrin derivative photodynamic treatment effects on rat ears,” Photochem. Photobiol. 52, 547–554 (1990).
[CrossRef] [PubMed]

Versteeg, J.

W. M. Star, J. Versteeg, W. van Putten, H. Marijnissen, “Wavelength dependence of hematoporphyrin derivative photodynamic treatment effects on rat ears,” Photochem. Photobiol. 52, 547–554 (1990).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art Of Scientific Computing (Cambridge U. Press, New York, 1992).

Wadsworth, W. J.

Wahlström, C. G.

S. Svanberg, J. Larsson, A. Persson, C. G. Wahlström, “Lund high-power laser facility—systems and first results,” Phys. Scr. 49, 187–197 (1994).
[CrossRef]

Weersink, R. A.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Western, A.

J. Moan, K. Berg, J. C. Bommer, A. Western, “Action spectra of phthalocyanines with respect to photosensitization of cells,” Photochem. Photobiol. 56, 171–175 (1992).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

T. J. Farrell, M. C. Olivo, M. S. Patterson, H. Wrona, B. C. Wilson, “Investigation of the dependence of tissue necrosis on irradiation wavelength and time post injection using a photodynamic threshold dose model,” in Photodynamic Therapy and Biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, eds. (Elsevier, Amsterdam, 1992), pp. 830–834.

Windeler, R. S.

Wood, S. R.

J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994).
[CrossRef] [PubMed]

Wrona, H.

T. J. Farrell, M. C. Olivo, M. S. Patterson, H. Wrona, B. C. Wilson, “Investigation of the dependence of tissue necrosis on irradiation wavelength and time post injection using a photodynamic threshold dose model,” in Photodynamic Therapy and Biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, eds. (Elsevier, Amsterdam, 1992), pp. 830–834.

Yamashita, Y.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

Appl. Spectrosc. (1)

Int. J. Cancer (1)

G. Hedlund, H. O. Sjögren, “Induction of transplantation immunity to rat colon carcinoma isografts by implantation of intact fetal colon tissue,” Int. J. Cancer 26, 71–73 (1980).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol. B (3)

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994).
[CrossRef] [PubMed]

M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994).
[CrossRef] [PubMed]

Lasers Life Sci. (1)

G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).

Med. Phys. (2)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

Opt. Lett. (3)

Photochem. Photobiol. (7)

C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, “Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing,” Photochem. Photobiol. 39, 365–368 (1984).
[CrossRef] [PubMed]

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994).
[CrossRef] [PubMed]

W. M. Star, J. Versteeg, W. van Putten, H. Marijnissen, “Wavelength dependence of hematoporphyrin derivative photodynamic treatment effects on rat ears,” Photochem. Photobiol. 52, 547–554 (1990).
[CrossRef] [PubMed]

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L. O. Björn, “Time-resolved studies of light propagation in Crassula and Phaseolus leaves,” Photochem. Photobiol. 69, 242–247 (1999).
[CrossRef]

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

J. Moan, K. Berg, J. C. Bommer, A. Western, “Action spectra of phthalocyanines with respect to photosensitization of cells,” Photochem. Photobiol. 56, 171–175 (1992).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

W. J. Jones, B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13, 657–659 (1964).
[CrossRef]

Phys. Scr. (1)

S. Svanberg, J. Larsson, A. Persson, C. G. Wahlström, “Lund high-power laser facility—systems and first results,” Phys. Scr. 49, 187–197 (1994).
[CrossRef]

Other (5)

T. J. Farrell, M. C. Olivo, M. S. Patterson, H. Wrona, B. C. Wilson, “Investigation of the dependence of tissue necrosis on irradiation wavelength and time post injection using a photodynamic threshold dose model,” in Photodynamic Therapy and Biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, eds. (Elsevier, Amsterdam, 1992), pp. 830–834.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art Of Scientific Computing (Cambridge U. Press, New York, 1992).

A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).

M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
[CrossRef]

A. A. Stratonnikov, General Physics Institute, Moscow (personal communication, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

Intensity spectrum of the white light.

Fig. 3
Fig. 3

Typical streak camera image recorded in the muscle of the hind leg 4 h postintraperitonial injection of AlS2Pc (5 mg/kg b.w.).

Fig. 4
Fig. 4

Typical result of the evaluation procedure. The impulse response of the system (filled diamonds) is convoluted to the solution of the diffusion equation. This gives a theoretical model (solid curve), which is fitted to the data (open circles).

Fig. 5
Fig. 5

Absorption spectra of rodent tumor (filled symbols) and muscle (open symbols) without any photosensitizer. The error bars are approximately ±0.03 around 670 nm and become larger toward the blue region as reflected in the data shown in Fig. 8.

Fig. 6
Fig. 6

Reduced scattering spectra of rodent tumor (filled symbols) and muscle (open symbols) without any photosensitizer.

Fig. 7
Fig. 7

(a) Absorption spectrum of a tumor 4 h postintraperitonial injection of AlS2Pc (2.5 mg/kg b.w.). The background absorption from the tissue is shown as a dashed curve. (b) The resulting in vivo absorption spectrum after we subtracted the tissue absorption from the result shown in (a).

Fig. 8
Fig. 8

Resulting in vivo absorption spectra from rodent tissue after intraperitonial injection of AlS2Pc at a dose of (a) 2.5 mg/kg b.w., and (b) 5.0 mg/kg b.w. The absorption of the sensitizer in tumor tissue (solid curves) is approximately twice that obtained in the muscle tissue (dashed curve). Moreover, the absorption spectra obtained in the muscle are redshifted. No difference in absorption coefficient could be found between the two doses, however.

Tables (1)

Tables Icon

Table 1 In vivo Absorption Coefficient of AlS2Pc in Tumor and Normal Rat Muscle Obtained at Two Wavelengths (670 and 690 nm) Following Intraperitonial Injection of Two Different Doses (2.5 and 5.0 mglsg b.w.)a

Metrics