Abstract

The detection limits for NO and NO2 in turbine exhausts by nonintrusive monitoring have to be improved. Multipass mode Fourier-transform infrared (FTIR) absorption spectrometry and use of a White mirror system were found from a sensitivity study with spectra simulations in the mid-infrared to be essential for the retrieval of NO2 abundances. A new White mirror system with a parallel infrared beam was developed and tested successfully with a commercial FTIR spectrometer in different turbine test beds. The minimum detection limits for a typical turbine plume of 50 cm in diameter are approximately 6 parts per million (ppm) for NO and 9 ppm for NO2 (as well 100 ppm for CO2 and 4 ppm for CO).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Intergovernmental Panel on Climate Change, Aviation and the Global Atmosphere (Intergovernmental Panel on Climate Change, Cambridge U. Press, Cambridge, UK, 1999).
  2. International Civil Aviation Organization, “Environmental protection,” in Aircraft Engine Emissions, 2nd ed. (International Civil Aviation Organization, Montreal, Quebec, 1993), Annex 16, Vol. 2.
  3. K. Schäfer, J. Heland, D. H. Lister, C. W. Wilson, R. J. Howes, R. S. Falk, E. Lindermeïr, M. Birk, G. Wagner, P. Haschberger, M. Bernard, O. Legras, P. Wiesen, R. Kurtenbach, K. J. Brockmann, V. Kriesche, M. Hilton, G. Bishop, R. Clarke, J. Workman, M. Caola, R. Geatches, R. Burrows, J. D. Black, P. Hervé, J. Vally, “Nonintrusive optical measurements of aircraft engine exhaust emissions and comparison with standard intrusive techniques,” Appl. Opt. 39, 441–455 (2000).
    [CrossRef]
  4. W. Demtröder, Laserspektroskopie. Grundlagen und Techniken (Springer-Verlag, Berlin, 1991).
  5. H. A. Beck, R. Niessner, C. Haisch, “Development and characterisation of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas,” Anal. Bioanal. Chem. 375, 1136–1143 (2003).
    [PubMed]
  6. S. Karellas, M. Raindl, J. Karl, “Online optical analysis of the product gas from gasification of biomass,” in Fourth Konferenz über Optische Analysemesstechnik in Industrie und Umwelt (VDI-Berichte, Frankfurt am. Main, Germany, 2004), Vol. 1863, pp. 65–71.
  7. A. Burkert, D. Grebner, D. Müller, W. Triebel, “Single shot imaging of formaldehyde in hydrocarbon flames by XeF excimer laser induced fluorescence,” in Proceeding of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1655–1661.
    [CrossRef]
  8. S. V. Naik, N. M. Laurendeau, “Measurements of absolute CH concentrations by cavity ring-down spectroscopy and linear laser-induced fluorescence in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure,” Appl. Opt. 43, 5116–5125 (2004).
    [CrossRef] [PubMed]
  9. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  10. J. Wolfrum, T. Dreier, V. Ebert, C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2118–2148.
  11. W. B. Grant, R. H. Kagann, W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18–30 (1992).
    [CrossRef] [PubMed]
  12. J. U. White, “Long optical paths of large apertures,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  13. R. Haus, K. Schäfer, W. Baútzer, J. Heland, H. Mosebach, H. Bittner, T. Eisenmann, “Mobile Fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994).
    [CrossRef] [PubMed]
  14. J. Heland, K. Schäfer, “Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy,” Appl. Opt. 36, 4922–4931 (1997).
    [CrossRef] [PubMed]
  15. J. Heland, K. Schäfer, “Determination of major combustion products in aircraft exhausts by FTIR emission spectroscopy,” Atmos. Environ. 32, 3067–3072 (1998).
    [CrossRef]
  16. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
    [CrossRef]
  17. L. S. Rothman, R. B. Wattson, R. R. Gamache, J. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
    [CrossRef]
  18. R. M. Goody, Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1986).
  19. J. M. Hartmann, M. Y. Perrin, Q. Ma, R. H. Tipping, “The infrared continuum of pure water vapor: calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49, 675–691 (1993).
    [CrossRef]
  20. I. Barnes, K. H. Becker, E. H. Fink, A. Reimer, F. Zabel, H. Niki, “Rate constant and products of the reactions CS2 + OH in the presence of O2,” Int. J. Chem. Kinet. 15, 631–645 (1983).
    [CrossRef]

2004 (1)

2003 (1)

H. A. Beck, R. Niessner, C. Haisch, “Development and characterisation of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas,” Anal. Bioanal. Chem. 375, 1136–1143 (2003).
[PubMed]

2000 (1)

1998 (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

J. Heland, K. Schäfer, “Determination of major combustion products in aircraft exhausts by FTIR emission spectroscopy,” Atmos. Environ. 32, 3067–3072 (1998).
[CrossRef]

1997 (1)

1994 (1)

1993 (1)

J. M. Hartmann, M. Y. Perrin, Q. Ma, R. H. Tipping, “The infrared continuum of pure water vapor: calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49, 675–691 (1993).
[CrossRef]

1992 (2)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

W. B. Grant, R. H. Kagann, W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18–30 (1992).
[CrossRef] [PubMed]

1983 (1)

I. Barnes, K. H. Becker, E. H. Fink, A. Reimer, F. Zabel, H. Niki, “Rate constant and products of the reactions CS2 + OH in the presence of O2,” Int. J. Chem. Kinet. 15, 631–645 (1983).
[CrossRef]

1942 (1)

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Barnes, I.

I. Barnes, K. H. Becker, E. H. Fink, A. Reimer, F. Zabel, H. Niki, “Rate constant and products of the reactions CS2 + OH in the presence of O2,” Int. J. Chem. Kinet. 15, 631–645 (1983).
[CrossRef]

Baútzer, W.

Beck, H. A.

H. A. Beck, R. Niessner, C. Haisch, “Development and characterisation of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas,” Anal. Bioanal. Chem. 375, 1136–1143 (2003).
[PubMed]

Becker, K. H.

I. Barnes, K. H. Becker, E. H. Fink, A. Reimer, F. Zabel, H. Niki, “Rate constant and products of the reactions CS2 + OH in the presence of O2,” Int. J. Chem. Kinet. 15, 631–645 (1983).
[CrossRef]

Benner, D. C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Bernard, M.

Birk, M.

Bishop, G.

Bittner, H.

Black, J. D.

Brockmann, K. J.

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Burkert, A.

A. Burkert, D. Grebner, D. Müller, W. Triebel, “Single shot imaging of formaldehyde in hydrocarbon flames by XeF excimer laser induced fluorescence,” in Proceeding of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1655–1661.
[CrossRef]

Burrows, R.

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Caola, M.

Clarke, R.

Demtröder, W.

W. Demtröder, Laserspektroskopie. Grundlagen und Techniken (Springer-Verlag, Berlin, 1991).

Dreier, T.

J. Wolfrum, T. Dreier, V. Ebert, C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2118–2148.

Ebert, V.

J. Wolfrum, T. Dreier, V. Ebert, C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2118–2148.

Eisenmann, T.

Falk, R. S.

Fink, E. H.

I. Barnes, K. H. Becker, E. H. Fink, A. Reimer, F. Zabel, H. Niki, “Rate constant and products of the reactions CS2 + OH in the presence of O2,” Int. J. Chem. Kinet. 15, 631–645 (1983).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

Geatches, R.

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Goody, R. M.

R. M. Goody, Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1986).

Grant, W. B.

W. B. Grant, R. H. Kagann, W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18–30 (1992).
[CrossRef] [PubMed]

Grebner, D.

A. Burkert, D. Grebner, D. Müller, W. Triebel, “Single shot imaging of formaldehyde in hydrocarbon flames by XeF excimer laser induced fluorescence,” in Proceeding of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1655–1661.
[CrossRef]

Haisch, C.

H. A. Beck, R. Niessner, C. Haisch, “Development and characterisation of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas,” Anal. Bioanal. Chem. 375, 1136–1143 (2003).
[PubMed]

Hartmann, J. M.

J. M. Hartmann, M. Y. Perrin, Q. Ma, R. H. Tipping, “The infrared continuum of pure water vapor: calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49, 675–691 (1993).
[CrossRef]

Haschberger, P.

Haus, R.

Heland, J.

Hervé, P.

Hilton, M.

Howes, R. J.

Kagann, R. H.

W. B. Grant, R. H. Kagann, W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18–30 (1992).
[CrossRef] [PubMed]

Karellas, S.

S. Karellas, M. Raindl, J. Karl, “Online optical analysis of the product gas from gasification of biomass,” in Fourth Konferenz über Optische Analysemesstechnik in Industrie und Umwelt (VDI-Berichte, Frankfurt am. Main, Germany, 2004), Vol. 1863, pp. 65–71.

Karl, J.

S. Karellas, M. Raindl, J. Karl, “Online optical analysis of the product gas from gasification of biomass,” in Fourth Konferenz über Optische Analysemesstechnik in Industrie und Umwelt (VDI-Berichte, Frankfurt am. Main, Germany, 2004), Vol. 1863, pp. 65–71.

Kriesche, V.

Kurtenbach, R.

Laurendeau, N. M.

Legras, O.

Lindermeïr, E.

Lister, D. H.

Ma, Q.

J. M. Hartmann, M. Y. Perrin, Q. Ma, R. H. Tipping, “The infrared continuum of pure water vapor: calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49, 675–691 (1993).
[CrossRef]

Malathy Devi, V.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

McCann, A.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

McClenny, W. A.

W. B. Grant, R. H. Kagann, W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18–30 (1992).
[CrossRef] [PubMed]

Mosebach, H.

Müller, D.

A. Burkert, D. Grebner, D. Müller, W. Triebel, “Single shot imaging of formaldehyde in hydrocarbon flames by XeF excimer laser induced fluorescence,” in Proceeding of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1655–1661.
[CrossRef]

Naik, S. V.

Niessner, R.

H. A. Beck, R. Niessner, C. Haisch, “Development and characterisation of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas,” Anal. Bioanal. Chem. 375, 1136–1143 (2003).
[PubMed]

Niki, H.

I. Barnes, K. H. Becker, E. H. Fink, A. Reimer, F. Zabel, H. Niki, “Rate constant and products of the reactions CS2 + OH in the presence of O2,” Int. J. Chem. Kinet. 15, 631–645 (1983).
[CrossRef]

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Perrin, M. Y.

J. M. Hartmann, M. Y. Perrin, Q. Ma, R. H. Tipping, “The infrared continuum of pure water vapor: calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49, 675–691 (1993).
[CrossRef]

Raindl, M.

S. Karellas, M. Raindl, J. Karl, “Online optical analysis of the product gas from gasification of biomass,” in Fourth Konferenz über Optische Analysemesstechnik in Industrie und Umwelt (VDI-Berichte, Frankfurt am. Main, Germany, 2004), Vol. 1863, pp. 65–71.

Reimer, A.

I. Barnes, K. H. Becker, E. H. Fink, A. Reimer, F. Zabel, H. Niki, “Rate constant and products of the reactions CS2 + OH in the presence of O2,” Int. J. Chem. Kinet. 15, 631–645 (1983).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

Schäfer, K.

Schroeder, J.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

Schulz, C.

J. Wolfrum, T. Dreier, V. Ebert, C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2118–2148.

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Tipping, R. H.

J. M. Hartmann, M. Y. Perrin, Q. Ma, R. H. Tipping, “The infrared continuum of pure water vapor: calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49, 675–691 (1993).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Triebel, W.

A. Burkert, D. Grebner, D. Müller, W. Triebel, “Single shot imaging of formaldehyde in hydrocarbon flames by XeF excimer laser induced fluorescence,” in Proceeding of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1655–1661.
[CrossRef]

Vally, J.

Wagner, G.

Wattson, R. B.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

White, J. U.

Wiesen, P.

Wilson, C. W.

Wolfrum, J.

J. Wolfrum, T. Dreier, V. Ebert, C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2118–2148.

Workman, J.

Yung, Y. L.

R. M. Goody, Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1986).

Zabel, F.

I. Barnes, K. H. Becker, E. H. Fink, A. Reimer, F. Zabel, H. Niki, “Rate constant and products of the reactions CS2 + OH in the presence of O2,” Int. J. Chem. Kinet. 15, 631–645 (1983).
[CrossRef]

Anal. Bioanal. Chem. (1)

H. A. Beck, R. Niessner, C. Haisch, “Development and characterisation of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas,” Anal. Bioanal. Chem. 375, 1136–1143 (2003).
[PubMed]

Appl. Opt. (4)

Atmos. Environ. (1)

J. Heland, K. Schäfer, “Determination of major combustion products in aircraft exhausts by FTIR emission spectroscopy,” Atmos. Environ. 32, 3067–3072 (1998).
[CrossRef]

Int. J. Chem. Kinet. (1)

I. Barnes, K. H. Becker, E. H. Fink, A. Reimer, F. Zabel, H. Niki, “Rate constant and products of the reactions CS2 + OH in the presence of O2,” Int. J. Chem. Kinet. 15, 631–645 (1983).
[CrossRef]

J. Air Waste Manage. Assoc. (1)

W. B. Grant, R. H. Kagann, W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18–30 (1992).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (2)

J. M. Hartmann, M. Y. Perrin, Q. Ma, R. H. Tipping, “The infrared continuum of pure water vapor: calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49, 675–691 (1993).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Other (8)

J. Wolfrum, T. Dreier, V. Ebert, C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2118–2148.

S. Karellas, M. Raindl, J. Karl, “Online optical analysis of the product gas from gasification of biomass,” in Fourth Konferenz über Optische Analysemesstechnik in Industrie und Umwelt (VDI-Berichte, Frankfurt am. Main, Germany, 2004), Vol. 1863, pp. 65–71.

A. Burkert, D. Grebner, D. Müller, W. Triebel, “Single shot imaging of formaldehyde in hydrocarbon flames by XeF excimer laser induced fluorescence,” in Proceeding of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1655–1661.
[CrossRef]

W. Demtröder, Laserspektroskopie. Grundlagen und Techniken (Springer-Verlag, Berlin, 1991).

Intergovernmental Panel on Climate Change, Aviation and the Global Atmosphere (Intergovernmental Panel on Climate Change, Cambridge U. Press, Cambridge, UK, 1999).

International Civil Aviation Organization, “Environmental protection,” in Aircraft Engine Emissions, 2nd ed. (International Civil Aviation Organization, Montreal, Quebec, 1993), Annex 16, Vol. 2.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

R. M. Goody, Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Optical depths of NO2 and interfering compounds (CO2 and H2O) in the spectral region 1595–1605 cm−1 for the power setting NH of 65%. The absorption signatures for 32 passes of single gases as well as of the gas mixture (sum) are given.

Fig. 2
Fig. 2

Transmissions of NO2 together with H2O and CO2 in the spectral region 1595–1605 cm−1 for the power setting NH of 65%. The absorption signatures for single pass (total transmission) as well as for 16 and 32 passes are given.

Fig. 3
Fig. 3

Optical depths of NO2 and interfering compounds (CO2 and H2O) in the spectral region 1627–1637 cm−1 for the power setting NH of 65%. The absorption signatures for 32 passes of single gases as well as of the gas mixture (sum) are given.

Fig. 4
Fig. 4

Transmissions of NO2 together with H2O and CO2 in the spectral region 1627–1637 cm−1 for the power setting NH of 65%. The absorption signatures for single pass (total transmission) as well as for 16 and 32 passes are given.

Fig. 5
Fig. 5

Optical depths of NO and interfering compounds (CO2 and H2O) in the spectral region 1895–1905 cm−1 for the power setting NH of 65%. The absorption signatures for 32 passes of single gases as well as of the gas mixture (sum) are given.

Fig. 6
Fig. 6

Transmissions of NO together with H2O and CO2 in the spectral region 1895–1905 cm−1 for the power setting NH of 65%. The absorption signatures for single pass (total transmission) as well as for 32 passes are given.

Fig. 7
Fig. 7

Schematic setup of a Kriesche system with a parallel beam. See text for details.

Fig. 8
Fig. 8

Transfer optics in the probe position of the Nicolet Magna 560 spectrometer.

Fig. 9
Fig. 9

Mirror setup for the single emission mode.

Fig. 10
Fig. 10

Adaptations to the Nicolet Magna 560 spectrometer to change between multipass absorption and single emission mode.

Fig. 11
Fig. 11

Instrumentation in an engine test bed at QinetiQ, UK. On the left side is the opposite mirrors rack, and on the right side is the field mirror rack.

Fig. 12
Fig. 12

Laboratory absorbance spectra of 3 ppm NO2 (solid curve) and 800 Pa H2O (dotted curve) between 1580 and 1620 cm−1 at atmospheric pressure and room temperature.

Fig. 13
Fig. 13

Laboratory absorption spectra of 4 ppm NO (solid curve) and 800 Pa H2O (dotted curve) between 1880 and 1920 cm−1 at atmospheric pressure and room temperature.

Fig. 14
Fig. 14

Comparison of the background spectrum collected by the FTIR spectrometer (given in millivolts, i.e., arbitrary units) without acoustic noise (top) and with a noise level of 100 dB (bottom) in a frequency range from 200 to 400 Hz.

Fig. 15
Fig. 15

Inversion results of intrusive measurements and measurements taken with the Kriesche system for a CO mixing ratio across the plume versus the distance to the plume axis at 91% NH (takeoff turbine conditions).

Fig. 16
Fig. 16

Inversion results of intrusive measurements and measurements taken with the Kriesche system for a NO mixing ratio across the plume versus the distance to the plume axis at 91% NH (takeoff turbine conditions).

Tables (4)

Tables Icon

Table 1 Input Values of Gas Mixing Ratio Profilesa

Tables Icon

Table 2 Plume Model of Temperature T and H2O Column Density q for 15 Layers Symmetric to the Plume Axisa

Tables Icon

Table 3 Spectral Regions for the Mixing Ratio Retrievals of H2O, NO, and NO2

Tables Icon

Table 4 Estimated Detection Limits for Different NO Lines Without Water-Vapor Interference

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I Δ ν = ε B Δ ν ( T GB ) τ Δ ν ( L ) ,
I = I b τ p τ f + I p τ f + I f .
I p = B ( T p ) ( 1 τ p ) ,
Θ I = Ø s 2 Ø Q 2 f g 2 I 1 ,
Ø G = Ø F .
Θ I = Θ W = Ø G 2 Ø F 2 R 2 , or Θ W = Ø W 4 R 2 ,
Ø E = ( Θ W R 2 ) 1 / 4 .
f E = R Ø E Ø G ,
1 b Q = 1 f E 1 R + f E .

Metrics