Abstract

A novel magnetic-resonance-coupled broadband near-infrared (NIR) tomography system for small animal brain studies is described. Several features of the image formation approach are new in NIR tomography and represent major advances in the path to recovering high-resolution hemoglobin and oxygen saturation images of tissue. The NIR data were broadband and continuous wave and were used along with a second-derivative-based estimation of the path length from water absorption. The path length estimation from water was then used along with the attenuation spectrum to recover absorption and reduced scattering coefficient images at multiple wavelengths and then to recover images of total hemoglobin and oxygen saturation. Going beyond these basics of NIR tomography, software has been developed to allow inclusion of structures derived from MR imaging (MRI) for the external and internal tissue boundaries, thereby improving the accuracy and spatial resolution of the properties in each tissue type. The system has been validated in both tissue-simulating phantoms, with 10% accuracy observed, and in a rat cranium imaging experiment. The latter experiment used variation in inspired oxygen (FiO2) to vary the observed hemoglobin and oxygen saturation images. Quantitative agreement was observed between the changes in deoxyhemoglobin values derived from NIR and the changes predicted with blood-oxygen-level-dependent (BOLD) MRI. This system represents the initial stage in what will likely be a larger role for NIR tomography, coupled to MRI, and illustrates that the technological challenges of using continuous-wave broadband data and inclusion of a priori structural information can be met with careful phantom studies.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jobsis, “Non-invasive, infra-red monitoring of cerebral and myochardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
    [CrossRef]
  2. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
    [CrossRef] [PubMed]
  3. O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectrophotometry,” J. Appl. Physiol. 64, 796–802 (1988).
    [PubMed]
  4. M. Haida, B. Chance, “A method to estimate the ratio of absorption coefficients of two wavelengths using phase modulated near infrared light spectroscopy,” Adv. Exp. Med. Biol. 345, 829–835 (1994).
    [CrossRef] [PubMed]
  5. S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1994).
    [CrossRef] [PubMed]
  6. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
    [CrossRef] [PubMed]
  7. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
    [CrossRef]
  8. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
  9. S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
    [CrossRef] [PubMed]
  10. S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
    [CrossRef] [PubMed]
  11. E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
    [CrossRef] [PubMed]
  12. S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
    [CrossRef]
  13. M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
    [CrossRef]
  14. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
    [CrossRef] [PubMed]
  15. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
    [CrossRef] [PubMed]
  16. A. Gibson, R. M. Yusof, H. Dehghani, J. Riley, N. Everdell, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
    [CrossRef] [PubMed]
  17. H. Xu, B. W. Pogue, H. Dehghani, R. Springett, K. D. Paulsen, J. F. Dunn, “Feasibility of NIR tomographic reconstruction with multispectral continuous wave data by mapping into frequency domain data,” in Optical Tomography and Spectros-copy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 103–114 (2003).
    [CrossRef]
  18. H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, “Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography,” Opt. Lett. 29, 2043–2045 (2004).
    [CrossRef] [PubMed]
  19. M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
    [CrossRef] [PubMed]
  20. B. A. Brooksby, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199–209 (2003).
    [CrossRef]
  21. V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
    [CrossRef]
  22. Q. Zhu, N. Chen, S. H. Kurtzman, “Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound,” Opt. Lett. 28, 337–339 (2003).
  23. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).
    [CrossRef] [PubMed]
  24. B. W. Pogue, K. D. Paulsen, “High resolution near infrared tomographic imaging simulations of rat cranium using a priori MRI structural information,” Opt. Lett. 23, 1716–1718 (1998).
    [CrossRef]
  25. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
    [CrossRef] [PubMed]
  26. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
    [CrossRef]
  27. B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148, 173–183 (1943).
  28. V. S. Hollis, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Ph.D. thesis (University College London, 2002).
  29. R. F. Reinoso, B. A. Telfer, M. Rowland, “Tissue water content in rats measured by desiccation,” J. Pharmacol. Toxi-col. Methods 38, 87–92 (1997).
    [CrossRef]
  30. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  31. H. B. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical-absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
    [CrossRef] [PubMed]
  32. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963).
    [CrossRef]
  33. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  34. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  35. H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
    [CrossRef] [PubMed]
  36. D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
    [CrossRef] [PubMed]
  37. C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
    [CrossRef] [PubMed]
  38. S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
    [CrossRef]
  39. Y. Chen, D. R. Tailor, X. Intes, B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
    [CrossRef] [PubMed]
  40. I. Kida, T. Yamamoto, M. Tamura, “Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information,” NMR Biomed. 9, 333–338 (1996).
    [CrossRef] [PubMed]
  41. B. A. Brooksby, S. Jiang, G. Ehret, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Development of a system for simultaneous MRI and near-infrared diffuse tomography to diagnose breast cancer,” in Biomedical Topical Meetings (CD-ROM) (Optical Society of America, Washington, D.C., 2004).
  42. B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
    [CrossRef]

2004 (3)

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, “Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography,” Opt. Lett. 29, 2043–2045 (2004).
[CrossRef] [PubMed]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

2003 (8)

Y. Chen, D. R. Tailor, X. Intes, B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[CrossRef] [PubMed]

B. A. Brooksby, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199–209 (2003).
[CrossRef]

Q. Zhu, N. Chen, S. H. Kurtzman, “Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound,” Opt. Lett. 28, 337–339 (2003).

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[CrossRef] [PubMed]

A. Gibson, R. M. Yusof, H. Dehghani, J. Riley, N. Everdell, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
[CrossRef] [PubMed]

2002 (1)

C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
[CrossRef] [PubMed]

2001 (3)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

1999 (2)

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
[CrossRef] [PubMed]

1998 (4)

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

B. W. Pogue, K. D. Paulsen, “High resolution near infrared tomographic imaging simulations of rat cranium using a priori MRI structural information,” Opt. Lett. 23, 1716–1718 (1998).
[CrossRef]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

1997 (5)

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
[CrossRef] [PubMed]

R. F. Reinoso, B. A. Telfer, M. Rowland, “Tissue water content in rats measured by desiccation,” J. Pharmacol. Toxi-col. Methods 38, 87–92 (1997).
[CrossRef]

S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
[CrossRef]

1996 (2)

I. Kida, T. Yamamoto, M. Tamura, “Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information,” NMR Biomed. 9, 333–338 (1996).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

1995 (3)

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical-absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

1994 (3)

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

M. Haida, B. Chance, “A method to estimate the ratio of absorption coefficients of two wavelengths using phase modulated near infrared light spectroscopy,” Adv. Exp. Med. Biol. 345, 829–835 (1994).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1994).
[CrossRef] [PubMed]

1988 (2)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectrophotometry,” J. Appl. Physiol. 64, 796–802 (1988).
[PubMed]

1977 (1)

F. F. Jobsis, “Non-invasive, infra-red monitoring of cerebral and myochardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef]

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963).
[CrossRef]

1943 (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148, 173–183 (1943).

Amess, P.

S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
[CrossRef]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Arridge, S. R.

A. Gibson, R. M. Yusof, H. Dehghani, J. Riley, N. Everdell, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Atkinson, N.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

Ballesteros, J. R.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Boas, D. A.

Brooksby, B.

Brooksby, B. A.

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

B. A. Brooksby, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199–209 (2003).
[CrossRef]

B. A. Brooksby, S. Jiang, G. Ehret, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Development of a system for simultaneous MRI and near-infrared diffuse tomography to diagnose breast cancer,” in Biomedical Topical Meetings (CD-ROM) (Optical Society of America, Washington, D.C., 2004).

Brukilacchio, T. J.

Butler, J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Chance, B.

Y. Chen, D. R. Tailor, X. Intes, B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

M. Haida, B. Chance, “A method to estimate the ratio of absorption coefficients of two wavelengths using phase modulated near infrared light spectroscopy,” Adv. Exp. Med. Biol. 345, 829–835 (1994).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Chaves, T.

Chen, N.

Chen, Y.

Y. Chen, D. R. Tailor, X. Intes, B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[CrossRef] [PubMed]

Chorlton, M.

Clemence, M.

S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
[CrossRef]

Cooper, C. E.

S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
[CrossRef]

S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1994).
[CrossRef] [PubMed]

Cope, M.

S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Decorps, M.

C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
[CrossRef] [PubMed]

Dehghani, H.

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, “Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography,” Opt. Lett. 29, 2043–2045 (2004).
[CrossRef] [PubMed]

A. Gibson, R. M. Yusof, H. Dehghani, J. Riley, N. Everdell, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

B. A. Brooksby, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199–209 (2003).
[CrossRef]

H. Xu, B. W. Pogue, H. Dehghani, R. Springett, K. D. Paulsen, J. F. Dunn, “Feasibility of NIR tomographic reconstruction with multispectral continuous wave data by mapping into frequency domain data,” in Optical Tomography and Spectros-copy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 103–114 (2003).
[CrossRef]

B. A. Brooksby, S. Jiang, G. Ehret, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Development of a system for simultaneous MRI and near-infrared diffuse tomography to diagnose breast cancer,” in Biomedical Topical Meetings (CD-ROM) (Optical Society of America, Washington, D.C., 2004).

Delpy, D. T.

A. Gibson, R. M. Yusof, H. Dehghani, J. Riley, N. Everdell, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

Doyley, M.

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

Doyley, M. M.

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

Dunn, J. F.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, R. Springett, K. D. Paulsen, J. F. Dunn, “Feasibility of NIR tomographic reconstruction with multispectral continuous wave data by mapping into frequency domain data,” in Optical Tomography and Spectros-copy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 103–114 (2003).
[CrossRef]

Ehret, G.

B. A. Brooksby, S. Jiang, G. Ehret, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Development of a system for simultaneous MRI and near-infrared diffuse tomography to diagnose breast cancer,” in Biomedical Topical Meetings (CD-ROM) (Optical Society of America, Washington, D.C., 2004).

Everdell, N.

Fantini, S.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Foster, T. H.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

Fountain, M.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Franceschini, M. A.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Geng, J.

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

Gibson, A.

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

Greenfield, R.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Haida, M.

M. Haida, B. Chance, “A method to estimate the ratio of absorption coefficients of two wavelengths using phase modulated near infrared light spectroscopy,” Adv. Exp. Med. Biol. 345, 829–835 (1994).
[CrossRef] [PubMed]

Hazeki, O.

O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectrophotometry,” J. Appl. Physiol. 64, 796–802 (1988).
[PubMed]

Hebden, J. C.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Hollis, V. S.

V. S. Hollis, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Ph.D. thesis (University College London, 2002).

Holtom, G.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Horecker, B. L.

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148, 173–183 (1943).

Hueber, D. M.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Hull, E. L.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

Intes, X.

Y. Chen, D. R. Tailor, X. Intes, B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[CrossRef] [PubMed]

Jiang, H.

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Jiang, H. B.

Jiang, S.

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. A. Brooksby, S. Jiang, G. Ehret, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Development of a system for simultaneous MRI and near-infrared diffuse tomography to diagnose breast cancer,” in Biomedical Topical Meetings (CD-ROM) (Optical Society of America, Washington, D.C., 2004).

Jobsis, F. F.

F. F. Jobsis, “Non-invasive, infra-red monitoring of cerebral and myochardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef]

Julien-Dolbec, C.

C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
[CrossRef] [PubMed]

Kent, J.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Kida, I.

I. Kida, T. Yamamoto, M. Tamura, “Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information,” NMR Biomed. 9, 333–338 (1996).
[CrossRef] [PubMed]

Kilmer, M. E.

Kogel, C.

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

Kopans, D. B.

Kurtzman, S. H.

Li, A.

Ma, H. Y.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Ma, X. H.

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Mahadevan, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

Malpica, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Matcher, S. J.

S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1994).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

McBride, T. O.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

McCully, K.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Miller, E. L.

Mitchell, M. F.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

Montigon, O.

C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
[CrossRef] [PubMed]

Moore, R. H.

Nichols, M. G.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Ntziachristos, V.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Ordidge, R. J.

S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
[CrossRef]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical-absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Patterson, M. S.

Paulsen, K. D.

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, “Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography,” Opt. Lett. 29, 2043–2045 (2004).
[CrossRef] [PubMed]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

B. A. Brooksby, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199–209 (2003).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

B. W. Pogue, K. D. Paulsen, “High resolution near infrared tomographic imaging simulations of rat cranium using a priori MRI structural information,” Opt. Lett. 23, 1716–1718 (1998).
[CrossRef]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical-absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, G. Ehret, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Development of a system for simultaneous MRI and near-infrared diffuse tomography to diagnose breast cancer,” in Biomedical Topical Meetings (CD-ROM) (Optical Society of America, Washington, D.C., 2004).

H. Xu, B. W. Pogue, H. Dehghani, R. Springett, K. D. Paulsen, J. F. Dunn, “Feasibility of NIR tomographic reconstruction with multispectral continuous wave data by mapping into frequency domain data,” in Optical Tomography and Spectros-copy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 103–114 (2003).
[CrossRef]

Payen, J. F.

C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
[CrossRef] [PubMed]

Penrice, J.

S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
[CrossRef]

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pogue, B. W.

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, “Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography,” Opt. Lett. 29, 2043–2045 (2004).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

B. A. Brooksby, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199–209 (2003).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

B. W. Pogue, K. D. Paulsen, “High resolution near infrared tomographic imaging simulations of rat cranium using a priori MRI structural information,” Opt. Lett. 23, 1716–1718 (1998).
[CrossRef]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical-absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, G. Ehret, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Development of a system for simultaneous MRI and near-infrared diffuse tomography to diagnose breast cancer,” in Biomedical Topical Meetings (CD-ROM) (Optical Society of America, Washington, D.C., 2004).

H. Xu, B. W. Pogue, H. Dehghani, R. Springett, K. D. Paulsen, J. F. Dunn, “Feasibility of NIR tomographic reconstruction with multispectral continuous wave data by mapping into frequency domain data,” in Optical Tomography and Spectros-copy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 103–114 (2003).
[CrossRef]

Poplack, S. P.

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Prewitt, J.

Punwani, S.

S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
[CrossRef]

Ramanujam, N.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

Reinoso, R. F.

R. F. Reinoso, B. A. Telfer, M. Rowland, “Tissue water content in rats measured by desiccation,” J. Pharmacol. Toxi-col. Methods 38, 87–92 (1997).
[CrossRef]

Reutenauer, H.

C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
[CrossRef] [PubMed]

Richards, R.

Richards-Kortum, R.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

Riley, J.

Rowland, M.

R. F. Reinoso, B. A. Telfer, M. Rowland, “Tissue water content in rats measured by desiccation,” J. Pharmacol. Toxi-col. Methods 38, 87–92 (1997).
[CrossRef]

Schweiger, M.

A. Gibson, R. M. Yusof, H. Dehghani, J. Riley, N. Everdell, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Shudong, J.

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

Springett, R.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, R. Springett, K. D. Paulsen, J. F. Dunn, “Feasibility of NIR tomographic reconstruction with multispectral continuous wave data by mapping into frequency domain data,” in Optical Tomography and Spectros-copy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 103–114 (2003).
[CrossRef]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

Stott, J.

Tailor, D. R.

Y. Chen, D. R. Tailor, X. Intes, B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[CrossRef] [PubMed]

Tamura, M.

I. Kida, T. Yamamoto, M. Tamura, “Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information,” NMR Biomed. 9, 333–338 (1996).
[CrossRef] [PubMed]

O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectrophotometry,” J. Appl. Physiol. 64, 796–802 (1988).
[PubMed]

Telfer, B. A.

R. F. Reinoso, B. A. Telfer, M. Rowland, “Tissue water content in rats measured by desiccation,” J. Pharmacol. Toxi-col. Methods 38, 87–92 (1997).
[CrossRef]

Thomsen, S.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

Thornton, J.

S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
[CrossRef]

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

Tromberg, B. J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Tropres, I.

C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
[CrossRef] [PubMed]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Wallace, D.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Weaver, J. B.

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Wright, T.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

Wu, T.

Xu, H.

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, “Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography,” Opt. Lett. 29, 2043–2045 (2004).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, R. Springett, K. D. Paulsen, J. F. Dunn, “Feasibility of NIR tomographic reconstruction with multispectral continuous wave data by mapping into frequency domain data,” in Optical Tomography and Spectros-copy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 103–114 (2003).
[CrossRef]

Yamamoto, T.

I. Kida, T. Yamamoto, M. Tamura, “Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information,” NMR Biomed. 9, 333–338 (1996).
[CrossRef] [PubMed]

Yusof, R. M.

Zhang, Q.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Zhu, Q.

Ziegler, A.

C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (2)

M. Haida, B. Chance, “A method to estimate the ratio of absorption coefficients of two wavelengths using phase modulated near infrared light spectroscopy,” Adv. Exp. Med. Biol. 345, 829–835 (1994).
[CrossRef] [PubMed]

S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thornton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectros-copy (NIRS) and absolute R2′ as determined by magnetic resonance imaging (MRI),” Adv. Exp. Med. Biol. 413, 129–137 (1997).
[CrossRef]

Anal. Biochem. (1)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Appl. Opt. (6)

Br. J. Anaesth. (1)

C. Julien-Dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler, M. Decorps, J. F. Payen, “Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain,” Br. J. Anaesth. 89, 287–293 (2002).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B. A. Brooksby, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199–209 (2003).
[CrossRef]

J. Appl. Physiol. (1)

O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectrophotometry,” J. Appl. Physiol. 64, 796–802 (1988).
[PubMed]

J. Biol. Chem. (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148, 173–183 (1943).

J. Biomed. Opt. (1)

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

J. Pharmacol. Toxi-col. Methods (1)

R. F. Reinoso, B. A. Telfer, M. Rowland, “Tissue water content in rats measured by desiccation,” J. Pharmacol. Toxi-col. Methods 38, 87–92 (1997).
[CrossRef]

J. Soc. Indust. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Lasers Surg. Med. (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[CrossRef] [PubMed]

Med. Phys. (2)

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

NMR Biomed. (1)

I. Kida, T. Yamamoto, M. Tamura, “Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information,” NMR Biomed. 9, 333–338 (1996).
[CrossRef] [PubMed]

Opt. Lett. (4)

Philos. Trans. R. Soc. London Ser. B (2)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

Phys. Med. Biol. (7)

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1994).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999).
[CrossRef] [PubMed]

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

Y. Chen, D. R. Tailor, X. Intes, B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).

Radiology (1)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. A. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

Science (1)

F. F. Jobsis, “Non-invasive, infra-red monitoring of cerebral and myochardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef]

Other (3)

H. Xu, B. W. Pogue, H. Dehghani, R. Springett, K. D. Paulsen, J. F. Dunn, “Feasibility of NIR tomographic reconstruction with multispectral continuous wave data by mapping into frequency domain data,” in Optical Tomography and Spectros-copy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 103–114 (2003).
[CrossRef]

V. S. Hollis, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Ph.D. thesis (University College London, 2002).

B. A. Brooksby, S. Jiang, G. Ehret, H. Dehghani, B. W. Pogue, K. D. Paulsen, “Development of a system for simultaneous MRI and near-infrared diffuse tomography to diagnose breast cancer,” in Biomedical Topical Meetings (CD-ROM) (Optical Society of America, Washington, D.C., 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic design of the MRI-coupled broadband NIR tomography system, for conceptual illustration. It has 8 source and 8 detector fibers alternately surrounding the tissue in the magnet, yielding 64 attenuation spectra from 700–900 nm.

Fig. 2
Fig. 2

(a) Photograph of the system is shown with marked components: A, light source; B, light delivery switching stages; C, fiber-optic interface and MRI coil; D, spectrograph and CCD detector. Enlarged photographs of components B and C are shown in (b) and (c), respectively.

Fig. 3
Fig. 3

(a) Examples of typical absorption spectrum and the contributions from individual chromophores are plotted.27,28 (b) Example of the second-derivative spectrum of absorption as well as the contributions from the corresponding chromophores.

Fig. 4
Fig. 4

(a) Measured attenuation spectrum from a homogeneous liquid phantom with 60 μmol/l HbR and 1.0% Intralipid. (b) Raw data of the phantom's second-derivative spectrum are shown, along with the spectrum fitted by SDSA and the residues.

Fig. 5
Fig. 5

Absorption and reduced scattering images of phantom A, which has a higher scattering inclusion off the center. (a) Target images, (b) reconstructed images without a priori information, (c) reconstructed images with a priori information.

Fig. 6
Fig. 6

Absorption and reduced scattering images of phantom B, which has a higher absorption but lower scattering inclusion off the center. (a) Target images, (b) reconstructed images without a priori information, (c) reconstructed images with a priori information.

Fig. 7
Fig. 7

Absorption and reduced scattering images of phantom C, which has a higher absorption and scattering inclusion off the center. (a) Target images, (b) reconstructed images without a priori information, (c) reconstructed images with a priori information.

Fig. 8
Fig. 8

Horizontal profile transects from the images of Figs. 5, 6, and 7. The contrast distribution for target images (dashed curves) was reconstructed from images without a priori information (solid curves) and reconstructed images with a priori information (dotted curves).

Fig. 9
Fig. 9

(a) Anatomically coronal T2-weighted MRI slice of the cranium with impressions caused by fibers all around the periphery. (b) Two-region finite-element fine mesh with labeled source and detector locations, as created from image (a). (c) Coarse mesh as used for reconstruction basis. (d) Reconstructed absorption image in the initial resting state, with the animal breathing a normal 30% oxygen.

Fig. 10
Fig. 10

Series of reconstructed absorption images at 740 and 840 nm when different inspired oxygen fractions (FiO2) were given. From left to right, the values correspond to FiO2 of 30%, 15%, 12%, 10%, 100%, 30%, 0%, and death, respectively.

Fig. 11
Fig. 11

(a) Changes of HbR, HbO2, HbT (total hemoglobin), and R2* are shown with the oxygen fraction. (b) Correlation of HbR and R2*.

Tables (1)

Tables Icon

Table 1 Summarized Results of Phantom Studiesa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A obj = ln ( I obj / I ref ) + A ref ,
A = d 2 A d λ 2 = ρ ( λ ) d 2 μ a d λ 2 = ρ ( λ ) i = 1 M C i d 2 ɛ i d λ 2 + o 1 = ρ ( λ ) i = 1 M C i ɛ i + o 1 ,
A = i = 1 M ( ρ C i ) ɛ i + o 1 + o 2 .
A = ɛ ρ C ,
D ( r ) Φ ( r , ω ) + ( μ a + i ω c ) Φ ( r , ω ) = q 0 ( r 0 , ω ) ,
Φ ( γ ) + D α n ̂ Φ ( γ ) = 0 ,
χ 2 = i = 1 N M ( ϕ i C ϕ i M ) 2 .
a = ( J T J + λ I ) 1 J T b ,

Metrics