Abstract

A variety of optical and electro-optical instruments are used for both diagnostic and therapeutic applications to the human eye. These generally expose ocular structures to either coherent or incoherent optical radiation (ultraviolet, visible, or infrared radiation) under unique conditions. We convert both laser and incoherent exposure guidelines derived for normal exposure conditions to the application of ophthalmic sources.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vision Res. 20, 1099–1104 (1980).
    [CrossRef] [PubMed]
  2. M. A. Mainster, W. T. Ham, F. C. Delori, “Potential retinal hazards: instrument and environmental light sources,” Ophthalmology 90, 927–931 (1983).
    [CrossRef] [PubMed]
  3. International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
    [CrossRef]
  4. D. H. Sliney, B. C. Armstrong, “Radiometric evaluation of surgical microscope lights for hazards analysis,” Appl. Opt. 25, 1882–1889 (1986).
    [CrossRef]
  5. International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1, 000 μm,” Health Phys. 71, 804–816 (1996).
  6. International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on UV radiation exposure limits,” Health Phys. 71, 978 (1996).
  7. International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation),” Health Phys. 49, 331–340 (1985).
  8. International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm),” Health Phys. 73, 539–554 (1997).
  9. International Standardization Organization (ISO), “Ophthalmic instruments—fundamental requirements and test methods for light hazard protection,” Standard 15004:1997 (International Standardization Organization, Geneva, 1997).
  10. D. H. Sliney, C. Campbell, “Ophthalmic instrument safety standards,” Laser Light Ophthalmol. 6, 207–215 (1994).
  11. H. Stiller, B. Rassow, “Light hazards to the patient's retina from ophthalmic instruments,” Appl. Opt. 30, 2187–2196 (1991).
    [CrossRef] [PubMed]
  12. W. T. Ham, “The photopathology and nature of the blue-light and near-UV retinal lesion produced by lasers and other optical sources,” in Laser Applications in Medicine and Biology, M. L. Wolbarsht, ed. (Plenum, New York, 1989).
    [CrossRef]
  13. G. Kleinmann, P. Hoffman, E. Schechtman, A. Pollack, “Microscope-induced retinal phototoxicity in cataract surgery of short duration,” Ophthalmology 109, 334–338 (2002).
    [CrossRef] [PubMed]
  14. D. G. Pits, A. P. Cullen, “Determination of infrared radiation levels for acute ocular cataractogenesis,” Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 217, 285–297 (1981).
    [CrossRef]
  15. J. A. Zuclich, “Cumulative effects of near-UV induced corneal damage,” Health Phys. 38, 833–838 (1980).
    [CrossRef] [PubMed]
  16. J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).
  17. D. G. Pitts, A. P. Cullen, P. D. Hacker, “Ocular effects of ultraviolet radiation from 295 to 365 nm,” Invest. Ophthal. Visual Sci. 16, 932–939 (1977).
  18. D. H. Sliney, M. L. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, New York, 1980).
    [CrossRef]
  19. International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Light-emitting diodes (LEDS) and laser diodes: implications for hazard assessment,” Health Phys. 73, 744–752 (2000).
  20. D. H. Sliney, “Quantifying retinal irradiance levels in light damage experiments,” Curr. Eye Res. 3, 175–179 (1984).
    [CrossRef] [PubMed]
  21. W. J. Geeraets, E. R. Berry, “Ocular spectral characteristics as related to hazards from lasers and other light sources,” Am. J. Ophthalmol. 66, 15–20 (1968).
    [PubMed]
  22. J. A. Zuclich, “Ultraviolet-induced photochemical damage in ocular tissues,” Health Phys. 56, 671–682 (1989).
    [CrossRef] [PubMed]
  23. T. Okuno, M. Kojima, I. Hata, D. H. Sliney, “Temperature rises in the crystalline lens focal irradiation,” Health Phys. 88, 214–222 (2005).
    [CrossRef] [PubMed]
  24. International Electrotechnical Commission (IEC), “Safety of laser products. Part 1: Equipment classification, requirements and user's guide,” Standard IEC 60825-1:2001 (International Electrotechnical Commission, Geneva, 2001).
  25. W. T. Ham, H. A. Mueller, D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260, 153–155 (1976).
    [CrossRef] [PubMed]
  26. B. F. Hochheimer, G. A. Lutty, S. A. D'Anna, “Ocular fluorescein phototoxicity,” Appl. Opt. 26, 1473–1479 (1987).
    [CrossRef] [PubMed]
  27. C. B. Bargeron, D. J. Deters, R. A. Farrell, R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56, 85–95 (1989).
    [CrossRef] [PubMed]
  28. M. L. Wolbarsht, “Damage to the lens from infrared,” in Ocular Effects of Nonionizing Radiation, M. L. Wolbarsht, D. H. Sliney, eds. Proc SPIE229, 121–141 (1980).
    [CrossRef]
  29. D. H. Sliney, J. Mellerio, V. P. Gabel, K. Schulmeister, “What is the meaning of threshold in laser damage experiments? Implications for human exposure limits,” Health Phys. 82, 335–347 (2002).
    [CrossRef] [PubMed]
  30. American National Standards Institute (ANSI), “Ophthalmics—intraocular lenses,” Standard Z80.7—1994 (American National Standards Institute, New York, 1994).
  31. International Electrotechnical Commission (IEC), “Medical electrical equipment. Part 2: Particular requirements for the safety of surgical luminaires and luminaires for diagnosis,” Standard IEC 60601-2-41 (International Electrotechnical Commission, Geneva, 2000).
  32. International Electrotechnical Commission (IEC), “Safety of laser products. Part 1: Equipment classification, requirements and user's guide,” Standard IEC 60825-1:2001 (International Electrotechnical Commission, Geneva, 2001).

2005 (1)

T. Okuno, M. Kojima, I. Hata, D. H. Sliney, “Temperature rises in the crystalline lens focal irradiation,” Health Phys. 88, 214–222 (2005).
[CrossRef] [PubMed]

2002 (2)

G. Kleinmann, P. Hoffman, E. Schechtman, A. Pollack, “Microscope-induced retinal phototoxicity in cataract surgery of short duration,” Ophthalmology 109, 334–338 (2002).
[CrossRef] [PubMed]

D. H. Sliney, J. Mellerio, V. P. Gabel, K. Schulmeister, “What is the meaning of threshold in laser damage experiments? Implications for human exposure limits,” Health Phys. 82, 335–347 (2002).
[CrossRef] [PubMed]

2000 (3)

J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Light-emitting diodes (LEDS) and laser diodes: implications for hazard assessment,” Health Phys. 73, 744–752 (2000).

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

1997 (1)

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm),” Health Phys. 73, 539–554 (1997).

1996 (2)

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1, 000 μm,” Health Phys. 71, 804–816 (1996).

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on UV radiation exposure limits,” Health Phys. 71, 978 (1996).

1994 (1)

D. H. Sliney, C. Campbell, “Ophthalmic instrument safety standards,” Laser Light Ophthalmol. 6, 207–215 (1994).

1991 (1)

1989 (2)

C. B. Bargeron, D. J. Deters, R. A. Farrell, R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56, 85–95 (1989).
[CrossRef] [PubMed]

J. A. Zuclich, “Ultraviolet-induced photochemical damage in ocular tissues,” Health Phys. 56, 671–682 (1989).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

1985 (1)

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation),” Health Phys. 49, 331–340 (1985).

1984 (1)

D. H. Sliney, “Quantifying retinal irradiance levels in light damage experiments,” Curr. Eye Res. 3, 175–179 (1984).
[CrossRef] [PubMed]

1983 (1)

M. A. Mainster, W. T. Ham, F. C. Delori, “Potential retinal hazards: instrument and environmental light sources,” Ophthalmology 90, 927–931 (1983).
[CrossRef] [PubMed]

1981 (1)

D. G. Pits, A. P. Cullen, “Determination of infrared radiation levels for acute ocular cataractogenesis,” Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 217, 285–297 (1981).
[CrossRef]

1980 (2)

J. A. Zuclich, “Cumulative effects of near-UV induced corneal damage,” Health Phys. 38, 833–838 (1980).
[CrossRef] [PubMed]

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vision Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

1977 (1)

D. G. Pitts, A. P. Cullen, P. D. Hacker, “Ocular effects of ultraviolet radiation from 295 to 365 nm,” Invest. Ophthal. Visual Sci. 16, 932–939 (1977).

1976 (1)

W. T. Ham, H. A. Mueller, D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260, 153–155 (1976).
[CrossRef] [PubMed]

1968 (1)

W. J. Geeraets, E. R. Berry, “Ocular spectral characteristics as related to hazards from lasers and other light sources,” Am. J. Ophthalmol. 66, 15–20 (1968).
[PubMed]

Armstrong, B. C.

Ayala, M.

J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).

Bargeron, C. B.

C. B. Bargeron, D. J. Deters, R. A. Farrell, R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56, 85–95 (1989).
[CrossRef] [PubMed]

Berry, E. R.

W. J. Geeraets, E. R. Berry, “Ocular spectral characteristics as related to hazards from lasers and other light sources,” Am. J. Ophthalmol. 66, 15–20 (1968).
[PubMed]

Campbell, C.

D. H. Sliney, C. Campbell, “Ophthalmic instrument safety standards,” Laser Light Ophthalmol. 6, 207–215 (1994).

Cullen, A. P.

D. G. Pits, A. P. Cullen, “Determination of infrared radiation levels for acute ocular cataractogenesis,” Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 217, 285–297 (1981).
[CrossRef]

D. G. Pitts, A. P. Cullen, P. D. Hacker, “Ocular effects of ultraviolet radiation from 295 to 365 nm,” Invest. Ophthal. Visual Sci. 16, 932–939 (1977).

D'Anna, S. A.

Delori, F. C.

M. A. Mainster, W. T. Ham, F. C. Delori, “Potential retinal hazards: instrument and environmental light sources,” Ophthalmology 90, 927–931 (1983).
[CrossRef] [PubMed]

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vision Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

Deters, D. J.

C. B. Bargeron, D. J. Deters, R. A. Farrell, R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56, 85–95 (1989).
[CrossRef] [PubMed]

Dillon, J.

J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).

Farrell, R. A.

C. B. Bargeron, D. J. Deters, R. A. Farrell, R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56, 85–95 (1989).
[CrossRef] [PubMed]

Gabel, V. P.

D. H. Sliney, J. Mellerio, V. P. Gabel, K. Schulmeister, “What is the meaning of threshold in laser damage experiments? Implications for human exposure limits,” Health Phys. 82, 335–347 (2002).
[CrossRef] [PubMed]

Geeraets, W. J.

W. J. Geeraets, E. R. Berry, “Ocular spectral characteristics as related to hazards from lasers and other light sources,” Am. J. Ophthalmol. 66, 15–20 (1968).
[PubMed]

Hacker, P. D.

D. G. Pitts, A. P. Cullen, P. D. Hacker, “Ocular effects of ultraviolet radiation from 295 to 365 nm,” Invest. Ophthal. Visual Sci. 16, 932–939 (1977).

Ham, W. T.

M. A. Mainster, W. T. Ham, F. C. Delori, “Potential retinal hazards: instrument and environmental light sources,” Ophthalmology 90, 927–931 (1983).
[CrossRef] [PubMed]

W. T. Ham, H. A. Mueller, D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260, 153–155 (1976).
[CrossRef] [PubMed]

W. T. Ham, “The photopathology and nature of the blue-light and near-UV retinal lesion produced by lasers and other optical sources,” in Laser Applications in Medicine and Biology, M. L. Wolbarsht, ed. (Plenum, New York, 1989).
[CrossRef]

Hata, I.

T. Okuno, M. Kojima, I. Hata, D. H. Sliney, “Temperature rises in the crystalline lens focal irradiation,” Health Phys. 88, 214–222 (2005).
[CrossRef] [PubMed]

Hochheimer, B. F.

Hoffman, P.

G. Kleinmann, P. Hoffman, E. Schechtman, A. Pollack, “Microscope-induced retinal phototoxicity in cataract surgery of short duration,” Ophthalmology 109, 334–338 (2002).
[CrossRef] [PubMed]

Kleinmann, G.

G. Kleinmann, P. Hoffman, E. Schechtman, A. Pollack, “Microscope-induced retinal phototoxicity in cataract surgery of short duration,” Ophthalmology 109, 334–338 (2002).
[CrossRef] [PubMed]

Kojima, M.

T. Okuno, M. Kojima, I. Hata, D. H. Sliney, “Temperature rises in the crystalline lens focal irradiation,” Health Phys. 88, 214–222 (2005).
[CrossRef] [PubMed]

Lofgren, S.

J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).

Lutty, G. A.

Mainster, M. A.

M. A. Mainster, W. T. Ham, F. C. Delori, “Potential retinal hazards: instrument and environmental light sources,” Ophthalmology 90, 927–931 (1983).
[CrossRef] [PubMed]

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vision Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

McCally, R. L.

C. B. Bargeron, D. J. Deters, R. A. Farrell, R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56, 85–95 (1989).
[CrossRef] [PubMed]

Mellerio, J.

D. H. Sliney, J. Mellerio, V. P. Gabel, K. Schulmeister, “What is the meaning of threshold in laser damage experiments? Implications for human exposure limits,” Health Phys. 82, 335–347 (2002).
[CrossRef] [PubMed]

Merriam, J. C.

J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).

Michael, R.

J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).

Mueller, H. A.

W. T. Ham, H. A. Mueller, D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260, 153–155 (1976).
[CrossRef] [PubMed]

Okuno, T.

T. Okuno, M. Kojima, I. Hata, D. H. Sliney, “Temperature rises in the crystalline lens focal irradiation,” Health Phys. 88, 214–222 (2005).
[CrossRef] [PubMed]

Parker, J. S.

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vision Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

Pits, D. G.

D. G. Pits, A. P. Cullen, “Determination of infrared radiation levels for acute ocular cataractogenesis,” Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 217, 285–297 (1981).
[CrossRef]

Pitts, D. G.

D. G. Pitts, A. P. Cullen, P. D. Hacker, “Ocular effects of ultraviolet radiation from 295 to 365 nm,” Invest. Ophthal. Visual Sci. 16, 932–939 (1977).

Pollack, A.

G. Kleinmann, P. Hoffman, E. Schechtman, A. Pollack, “Microscope-induced retinal phototoxicity in cataract surgery of short duration,” Ophthalmology 109, 334–338 (2002).
[CrossRef] [PubMed]

Rassow, B.

Schechtman, E.

G. Kleinmann, P. Hoffman, E. Schechtman, A. Pollack, “Microscope-induced retinal phototoxicity in cataract surgery of short duration,” Ophthalmology 109, 334–338 (2002).
[CrossRef] [PubMed]

Schulmeister, K.

D. H. Sliney, J. Mellerio, V. P. Gabel, K. Schulmeister, “What is the meaning of threshold in laser damage experiments? Implications for human exposure limits,” Health Phys. 82, 335–347 (2002).
[CrossRef] [PubMed]

Sliney, D. H.

T. Okuno, M. Kojima, I. Hata, D. H. Sliney, “Temperature rises in the crystalline lens focal irradiation,” Health Phys. 88, 214–222 (2005).
[CrossRef] [PubMed]

D. H. Sliney, J. Mellerio, V. P. Gabel, K. Schulmeister, “What is the meaning of threshold in laser damage experiments? Implications for human exposure limits,” Health Phys. 82, 335–347 (2002).
[CrossRef] [PubMed]

D. H. Sliney, C. Campbell, “Ophthalmic instrument safety standards,” Laser Light Ophthalmol. 6, 207–215 (1994).

D. H. Sliney, B. C. Armstrong, “Radiometric evaluation of surgical microscope lights for hazards analysis,” Appl. Opt. 25, 1882–1889 (1986).
[CrossRef]

D. H. Sliney, “Quantifying retinal irradiance levels in light damage experiments,” Curr. Eye Res. 3, 175–179 (1984).
[CrossRef] [PubMed]

W. T. Ham, H. A. Mueller, D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260, 153–155 (1976).
[CrossRef] [PubMed]

D. H. Sliney, M. L. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, New York, 1980).
[CrossRef]

Soderberg, P. G.

J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).

Stiller, H.

Wolbarsht, M. L.

M. L. Wolbarsht, “Damage to the lens from infrared,” in Ocular Effects of Nonionizing Radiation, M. L. Wolbarsht, D. H. Sliney, eds. Proc SPIE229, 121–141 (1980).
[CrossRef]

D. H. Sliney, M. L. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, New York, 1980).
[CrossRef]

Zheng, L.

J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).

Zuclich, J. A.

J. A. Zuclich, “Ultraviolet-induced photochemical damage in ocular tissues,” Health Phys. 56, 671–682 (1989).
[CrossRef] [PubMed]

J. A. Zuclich, “Cumulative effects of near-UV induced corneal damage,” Health Phys. 38, 833–838 (1980).
[CrossRef] [PubMed]

Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. (1)

D. G. Pits, A. P. Cullen, “Determination of infrared radiation levels for acute ocular cataractogenesis,” Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 217, 285–297 (1981).
[CrossRef]

Am. J. Ophthalmol. (1)

W. J. Geeraets, E. R. Berry, “Ocular spectral characteristics as related to hazards from lasers and other light sources,” Am. J. Ophthalmol. 66, 15–20 (1968).
[PubMed]

Appl. Opt. (3)

Curr. Eye Res. (1)

D. H. Sliney, “Quantifying retinal irradiance levels in light damage experiments,” Curr. Eye Res. 3, 175–179 (1984).
[CrossRef] [PubMed]

Health Phys. (11)

C. B. Bargeron, D. J. Deters, R. A. Farrell, R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56, 85–95 (1989).
[CrossRef] [PubMed]

J. A. Zuclich, “Ultraviolet-induced photochemical damage in ocular tissues,” Health Phys. 56, 671–682 (1989).
[CrossRef] [PubMed]

T. Okuno, M. Kojima, I. Hata, D. H. Sliney, “Temperature rises in the crystalline lens focal irradiation,” Health Phys. 88, 214–222 (2005).
[CrossRef] [PubMed]

D. H. Sliney, J. Mellerio, V. P. Gabel, K. Schulmeister, “What is the meaning of threshold in laser damage experiments? Implications for human exposure limits,” Health Phys. 82, 335–347 (2002).
[CrossRef] [PubMed]

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1, 000 μm,” Health Phys. 71, 804–816 (1996).

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on UV radiation exposure limits,” Health Phys. 71, 978 (1996).

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation),” Health Phys. 49, 331–340 (1985).

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm),” Health Phys. 73, 539–554 (1997).

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

J. A. Zuclich, “Cumulative effects of near-UV induced corneal damage,” Health Phys. 38, 833–838 (1980).
[CrossRef] [PubMed]

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Light-emitting diodes (LEDS) and laser diodes: implications for hazard assessment,” Health Phys. 73, 744–752 (2000).

Invest. Ophthal. Visual Sci. (1)

D. G. Pitts, A. P. Cullen, P. D. Hacker, “Ocular effects of ultraviolet radiation from 295 to 365 nm,” Invest. Ophthal. Visual Sci. 16, 932–939 (1977).

Invest. Ophthalmol. Visual Sci. (1)

J. C. Merriam, S. Lofgren, R. Michael, P. G. Soderberg, J. Dillon, L. Zheng, M. Ayala, “An action spectrum for UVB radiation in the rat lens,” Invest. Ophthalmol. Visual Sci. 41, 2642–2647 (2000).

Laser Light Ophthalmol. (1)

D. H. Sliney, C. Campbell, “Ophthalmic instrument safety standards,” Laser Light Ophthalmol. 6, 207–215 (1994).

Nature (1)

W. T. Ham, H. A. Mueller, D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260, 153–155 (1976).
[CrossRef] [PubMed]

Ophthalmology (2)

M. A. Mainster, W. T. Ham, F. C. Delori, “Potential retinal hazards: instrument and environmental light sources,” Ophthalmology 90, 927–931 (1983).
[CrossRef] [PubMed]

G. Kleinmann, P. Hoffman, E. Schechtman, A. Pollack, “Microscope-induced retinal phototoxicity in cataract surgery of short duration,” Ophthalmology 109, 334–338 (2002).
[CrossRef] [PubMed]

Vision Res. (1)

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vision Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

Other (8)

International Standardization Organization (ISO), “Ophthalmic instruments—fundamental requirements and test methods for light hazard protection,” Standard 15004:1997 (International Standardization Organization, Geneva, 1997).

D. H. Sliney, M. L. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, New York, 1980).
[CrossRef]

W. T. Ham, “The photopathology and nature of the blue-light and near-UV retinal lesion produced by lasers and other optical sources,” in Laser Applications in Medicine and Biology, M. L. Wolbarsht, ed. (Plenum, New York, 1989).
[CrossRef]

M. L. Wolbarsht, “Damage to the lens from infrared,” in Ocular Effects of Nonionizing Radiation, M. L. Wolbarsht, D. H. Sliney, eds. Proc SPIE229, 121–141 (1980).
[CrossRef]

International Electrotechnical Commission (IEC), “Safety of laser products. Part 1: Equipment classification, requirements and user's guide,” Standard IEC 60825-1:2001 (International Electrotechnical Commission, Geneva, 2001).

American National Standards Institute (ANSI), “Ophthalmics—intraocular lenses,” Standard Z80.7—1994 (American National Standards Institute, New York, 1994).

International Electrotechnical Commission (IEC), “Medical electrical equipment. Part 2: Particular requirements for the safety of surgical luminaires and luminaires for diagnosis,” Standard IEC 60601-2-41 (International Electrotechnical Commission, Geneva, 2000).

International Electrotechnical Commission (IEC), “Safety of laser products. Part 1: Equipment classification, requirements and user's guide,” Standard IEC 60825-1:2001 (International Electrotechnical Commission, Geneva, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Maxwellian view. A large retinal area can be illuminated by a converging beam focused at or near the eye's nodal point (approximately 17 mm in front of the retina).

Fig. 2
Fig. 2

CIE spectral sensitivity (standard observer) curves V(λ), V(λ) for the human eye. For comparison, the ICNIRP blue-light hazard function B(λ) and the current retinal thermal hazard function R(λ)are also provided. At this time ICNIRP is considering revising the retinal thermal hazard action spectrum R(λ) so that it has no numerical factors greater than 1.0, which has been the case for wavelengths between 400 and 500 nm. The current values between 380 and 440 nm should be divided by 10, and the values between 440 and 500 nm should all be lowered to a single value of 1.0.

Fig. 3
Fig. 3

ICNIRP UV hazard function S(λ) describes approximately the relative spectral risk for photokeratitis and is also an envelope of the action spectra for cataract and erythema of the skin. The left panel shows S(λ) as a linear plot, and the right panel shows S(λ) as a semilogarithmic plot to illustrate the contribution of longer UV wavelengths.

Fig. 4
Fig. 4

Several representative retinal illumination patterns from a variety of different instruments. The upper-left panel shows the direct ophthalmoscope (type A), the upper-right panel shows the Maxwellian-view optics of the indirect ophthalmoscope (type B), and the central-right panel shows another type of indirect ophthalmoscope. A slit lamp (type A) is shown at the lower left. The lower-right panel shows an intraocular probe (neither type A nor type B). Some optical paths are shortened and are not to scale.

Tables (4)

Tables Icon

Table 1 Current General Exposure Guidance and Hazard Thresholds at Each Relevant Ocular Plane

Tables Icon

Table 2 Ophthalmic Instrumentsa

Tables Icon

Table 3 Exposure Limits for Unrestricted Instrument Use: Photochemical Limitsa

Tables Icon

Table 4 Exposure Limits for Unrestricted Instrument Use: Thermal Limitsa

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E r = π L s τ d e 2 / 4 f 2 .
E r = 0.27 L s τ d e 2 .
H = E t .
E eff = E λ F ( λ ) Δ λ ,
E eff = E λ S ( λ ) Δ λ ,
t max = ( 3 mJ / cm 2 ) / ( E eff ) .
H max = H λ Δ λ = 1 J / cm 2 .
L λ R ( λ ) Δ λ 5 / ( α t 0.25 ) for t > 10 μ s and 1.7 mrad < α < 0.1 rad .
H therm = E λ R ( λ ) Δ λ 50 / ( α t 0.25 ) [ J / cm 2 ] ,
L λ R ( λ ) Δ λ ( 0.6 ) / ( α ) [ W / cm 2 sr ) ] ,
E = 0.27 ( 0.6 ) α ( 0.9 ) ( 0.49 ) = 0.0714 α = 0.071 17 d r = E λ R ( λ ) Δ λ = 1.21 d r [ W / cm 2 ] = 1.2 W / cm 2 at 1000 μ m , 12 W / cm 2 at 100 μ m , 50 W / cm 2 at 26 μ m .
L λ B ( λ ) t Δ λ 100 J / ( cm 2 sr ) for t > 10 s and γ = 0.011 rad ,

Metrics