Abstract

The point-spread function (PSF) for transcutaneous fluorescent imaging was obtained as an analytical solution in a closed form. It is applicable to cases in which the optical property of the image-blurring turbid medium is considered to be fairly homogeneous. We proposed a technique to improve a transcutaneous image by using depth-dependent PSF. Contrast of the fluorescent image was improved for depths of 1–15 mm in a scattering medium (μs = 1/mm). The visible depth was more than doubled with this technique. An experiment with a rat demonstrated considerable improvement of a transcutaneous image of the cerebral vein at a specified depth. The spread image of the heart was reduced to the correct size by use of the PSF with the actual depth of the heart.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bright, “Case CCV,” in Reports of Medical Cases Selected with a View of Illustrating the Symptoms and Cure of Diseases by a Reference to Morbid Anatomy, Diseases of the Brain and Nervous System, (Longmans, Green, London, 1831).
  2. T. B. Curling, “Hydrocele,” in Practical Treatise on the Diseases of the Testis and of the Spermatic Cord and Scrotum,” (Longmans, Green, London, 1843), pp. 125–181.
  3. M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–729 (1929).
  4. K. Shimizu, M. Mouri, K. Yamamoto, “Trans-body imaging of physiological functions with light,” in Optical Methods in Biomedical and Environmental Sciences, H. Ohzu, S. Komatsu, ed. (Elsevier Science, New York, 1994), pp. 63–66.
  5. R. S. Balaban, V. A. Hampshire, “Challenges in small animal noninvasive imaging,” Inst. Lab. Anim. Res. 42, 248–262 (2001).
  6. C. Lok, “Picture perfect,” Nature 412, 372–374 (2001).
    [CrossRef] [PubMed]
  7. D. A. Benaron, “The future of cancer imaging,” Cancer Metastasis Rev. 21, 45–78 (2002).
    [CrossRef] [PubMed]
  8. T. F. Massoud, S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
    [CrossRef] [PubMed]
  9. K. Shimizu, K. Yamamoto, “Imaging of physiological functions by laser transillumination,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 348–352.
  10. Y. Taka, K. Sakatani, Y. Kato, K. Shimizu, “Non-invasive imaging of absorption changes in rat brain by NIR transillumination,” Med. Imaging Technol. 17, 545–555 (1999).
  11. K. Shimizu, M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
    [CrossRef]
  12. K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
    [CrossRef] [PubMed]
  13. J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [CrossRef] [PubMed]
  14. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
    [CrossRef] [PubMed]
  15. D. J. Hall, J. C. Hebden, D. T. Delpy, “Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media,” Med. Phys. 24, 361–368 (1997).
    [CrossRef] [PubMed]
  16. A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
    [CrossRef] [PubMed]
  17. V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
    [CrossRef] [PubMed]
  18. V. Chernomordik, A. H. Gandjbakhche, M. Lepore, R. Esposito, I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6, 441–445 (2001).
    [CrossRef] [PubMed]
  19. K. Shimizu, Y. Kato, K. Tochio, “Improvement of transcutaneous fluorescent image by depth-dependent PSF,” in Technical Digest of OSA Biomedical Optics Topical Meetings (CD-ROM), paper ThF22 (2004).
  20. V. Tuchin, Tissue Optics (SPIE, Bellingham, Wash., 2000).
  21. A. Ishimaru, Wave Propagation and Scattering in Random Media (Institute of Electrical and Electronics Engineers, New York, 1997).
  22. R. C. Benson, H. A. Kues, “Fluorescence properties of Indocyanine Green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
    [CrossRef] [PubMed]
  23. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Guideline for the Care and Use of Laboratory Animals, (National Academy of Sciences–National Research Council, Washington, D.C., 1996).

2004 (1)

K. Shimizu, Y. Kato, K. Tochio, “Improvement of transcutaneous fluorescent image by depth-dependent PSF,” in Technical Digest of OSA Biomedical Optics Topical Meetings (CD-ROM), paper ThF22 (2004).

2003 (1)

T. F. Massoud, S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[CrossRef] [PubMed]

2002 (1)

D. A. Benaron, “The future of cancer imaging,” Cancer Metastasis Rev. 21, 45–78 (2002).
[CrossRef] [PubMed]

2001 (3)

R. S. Balaban, V. A. Hampshire, “Challenges in small animal noninvasive imaging,” Inst. Lab. Anim. Res. 42, 248–262 (2001).

C. Lok, “Picture perfect,” Nature 412, 372–374 (2001).
[CrossRef] [PubMed]

V. Chernomordik, A. H. Gandjbakhche, M. Lepore, R. Esposito, I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6, 441–445 (2001).
[CrossRef] [PubMed]

2000 (1)

K. Shimizu, M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
[CrossRef]

1999 (1)

Y. Taka, K. Sakatani, Y. Kato, K. Shimizu, “Non-invasive imaging of absorption changes in rat brain by NIR transillumination,” Med. Imaging Technol. 17, 545–555 (1999).

1997 (4)

K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

D. J. Hall, J. C. Hebden, D. T. Delpy, “Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media,” Med. Phys. 24, 361–368 (1997).
[CrossRef] [PubMed]

1996 (1)

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

1994 (1)

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

1978 (1)

R. C. Benson, H. A. Kues, “Fluorescence properties of Indocyanine Green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
[CrossRef] [PubMed]

1929 (1)

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Arridge, S. R.

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Balaban, R. S.

R. S. Balaban, V. A. Hampshire, “Challenges in small animal noninvasive imaging,” Inst. Lab. Anim. Res. 42, 248–262 (2001).

Benaron, D. A.

D. A. Benaron, “The future of cancer imaging,” Cancer Metastasis Rev. 21, 45–78 (2002).
[CrossRef] [PubMed]

Benson, R. C.

R. C. Benson, H. A. Kues, “Fluorescence properties of Indocyanine Green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
[CrossRef] [PubMed]

Bonner, R. F.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Bright, R.

R. Bright, “Case CCV,” in Reports of Medical Cases Selected with a View of Illustrating the Symptoms and Cure of Diseases by a Reference to Morbid Anatomy, Diseases of the Brain and Nervous System, (Longmans, Green, London, 1831).

Chernomordik, V.

V. Chernomordik, A. H. Gandjbakhche, M. Lepore, R. Esposito, I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6, 441–445 (2001).
[CrossRef] [PubMed]

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

Curling, T. B.

T. B. Curling, “Hydrocele,” in Practical Treatise on the Diseases of the Testis and of the Spermatic Cord and Scrotum,” (Longmans, Green, London, 1843), pp. 125–181.

Cutler, M.

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Delfino, I.

V. Chernomordik, A. H. Gandjbakhche, M. Lepore, R. Esposito, I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6, 441–445 (2001).
[CrossRef] [PubMed]

Delpy, D. T.

D. J. Hall, J. C. Hebden, D. T. Delpy, “Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media,” Med. Phys. 24, 361–368 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Esposito, R.

V. Chernomordik, A. H. Gandjbakhche, M. Lepore, R. Esposito, I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6, 441–445 (2001).
[CrossRef] [PubMed]

Gambhir, S. S.

T. F. Massoud, S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

V. Chernomordik, A. H. Gandjbakhche, M. Lepore, R. Esposito, I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6, 441–445 (2001).
[CrossRef] [PubMed]

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Hall, D. J.

D. J. Hall, J. C. Hebden, D. T. Delpy, “Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media,” Med. Phys. 24, 361–368 (1997).
[CrossRef] [PubMed]

Hampshire, V. A.

R. S. Balaban, V. A. Hampshire, “Challenges in small animal noninvasive imaging,” Inst. Lab. Anim. Res. 42, 248–262 (2001).

Hebden, J. C.

D. J. Hall, J. C. Hebden, D. T. Delpy, “Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media,” Med. Phys. 24, 361–368 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Institute of Electrical and Electronics Engineers, New York, 1997).

Kashiwasake-Jibu, M.

K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef] [PubMed]

Kato, Y.

K. Shimizu, Y. Kato, K. Tochio, “Improvement of transcutaneous fluorescent image by depth-dependent PSF,” in Technical Digest of OSA Biomedical Optics Topical Meetings (CD-ROM), paper ThF22 (2004).

Y. Taka, K. Sakatani, Y. Kato, K. Shimizu, “Non-invasive imaging of absorption changes in rat brain by NIR transillumination,” Med. Imaging Technol. 17, 545–555 (1999).

Kitama, M.

K. Shimizu, M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
[CrossRef]

Kues, H. A.

R. C. Benson, H. A. Kues, “Fluorescence properties of Indocyanine Green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
[CrossRef] [PubMed]

Lepore, M.

V. Chernomordik, A. H. Gandjbakhche, M. Lepore, R. Esposito, I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6, 441–445 (2001).
[CrossRef] [PubMed]

Lok, C.

C. Lok, “Picture perfect,” Nature 412, 372–374 (2001).
[CrossRef] [PubMed]

Massoud, T. F.

T. F. Massoud, S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[CrossRef] [PubMed]

Mouri, M.

K. Shimizu, M. Mouri, K. Yamamoto, “Trans-body imaging of physiological functions with light,” in Optical Methods in Biomedical and Environmental Sciences, H. Ohzu, S. Komatsu, ed. (Elsevier Science, New York, 1994), pp. 63–66.

Nossal, R.

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Sakatani, K.

Y. Taka, K. Sakatani, Y. Kato, K. Shimizu, “Non-invasive imaging of absorption changes in rat brain by NIR transillumination,” Med. Imaging Technol. 17, 545–555 (1999).

K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef] [PubMed]

Shimizu, K.

K. Shimizu, Y. Kato, K. Tochio, “Improvement of transcutaneous fluorescent image by depth-dependent PSF,” in Technical Digest of OSA Biomedical Optics Topical Meetings (CD-ROM), paper ThF22 (2004).

K. Shimizu, M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
[CrossRef]

Y. Taka, K. Sakatani, Y. Kato, K. Shimizu, “Non-invasive imaging of absorption changes in rat brain by NIR transillumination,” Med. Imaging Technol. 17, 545–555 (1999).

K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef] [PubMed]

K. Shimizu, K. Yamamoto, “Imaging of physiological functions by laser transillumination,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 348–352.

K. Shimizu, M. Mouri, K. Yamamoto, “Trans-body imaging of physiological functions with light,” in Optical Methods in Biomedical and Environmental Sciences, H. Ohzu, S. Komatsu, ed. (Elsevier Science, New York, 1994), pp. 63–66.

Taka, Y.

Y. Taka, K. Sakatani, Y. Kato, K. Shimizu, “Non-invasive imaging of absorption changes in rat brain by NIR transillumination,” Med. Imaging Technol. 17, 545–555 (1999).

K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef] [PubMed]

Tochio, K.

K. Shimizu, Y. Kato, K. Tochio, “Improvement of transcutaneous fluorescent image by depth-dependent PSF,” in Technical Digest of OSA Biomedical Optics Topical Meetings (CD-ROM), paper ThF22 (2004).

Tuchin, V.

V. Tuchin, Tissue Optics (SPIE, Bellingham, Wash., 2000).

Wang, S.

K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef] [PubMed]

Yamamoto, K.

K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef] [PubMed]

K. Shimizu, K. Yamamoto, “Imaging of physiological functions by laser transillumination,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 348–352.

K. Shimizu, M. Mouri, K. Yamamoto, “Trans-body imaging of physiological functions with light,” in Optical Methods in Biomedical and Environmental Sciences, H. Ohzu, S. Komatsu, ed. (Elsevier Science, New York, 1994), pp. 63–66.

Zuo, H.

K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef] [PubMed]

Cancer Metastasis Rev. (1)

D. A. Benaron, “The future of cancer imaging,” Cancer Metastasis Rev. 21, 45–78 (2002).
[CrossRef] [PubMed]

Genes Dev. (1)

T. F. Massoud, S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[CrossRef] [PubMed]

Inst. Lab. Anim. Res. (1)

R. S. Balaban, V. A. Hampshire, “Challenges in small animal noninvasive imaging,” Inst. Lab. Anim. Res. 42, 248–262 (2001).

J. Biomed. Opt. (1)

V. Chernomordik, A. H. Gandjbakhche, M. Lepore, R. Esposito, I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6, 441–445 (2001).
[CrossRef] [PubMed]

J. Neurosurg. (1)

K. Sakatani, M. Kashiwasake-Jibu, Y. Taka, S. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef] [PubMed]

Med. Imaging Technol. (1)

Y. Taka, K. Sakatani, Y. Kato, K. Shimizu, “Non-invasive imaging of absorption changes in rat brain by NIR transillumination,” Med. Imaging Technol. 17, 545–555 (1999).

Med. Phys. (3)

D. J. Hall, J. C. Hebden, D. T. Delpy, “Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media,” Med. Phys. 24, 361–368 (1997).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

Nature (1)

C. Lok, “Picture perfect,” Nature 412, 372–374 (2001).
[CrossRef] [PubMed]

Opt. Rev. (1)

K. Shimizu, M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
[CrossRef]

Phys. Med. Biol. (3)

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

R. C. Benson, H. A. Kues, “Fluorescence properties of Indocyanine Green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978).
[CrossRef] [PubMed]

Surg. Gynecol. Obstet. (1)

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Technical Digest of OSA Biomedical Optics Topical Meetings (CD-ROM) (1)

K. Shimizu, Y. Kato, K. Tochio, “Improvement of transcutaneous fluorescent image by depth-dependent PSF,” in Technical Digest of OSA Biomedical Optics Topical Meetings (CD-ROM), paper ThF22 (2004).

Other (7)

V. Tuchin, Tissue Optics (SPIE, Bellingham, Wash., 2000).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Institute of Electrical and Electronics Engineers, New York, 1997).

K. Shimizu, M. Mouri, K. Yamamoto, “Trans-body imaging of physiological functions with light,” in Optical Methods in Biomedical and Environmental Sciences, H. Ohzu, S. Komatsu, ed. (Elsevier Science, New York, 1994), pp. 63–66.

R. Bright, “Case CCV,” in Reports of Medical Cases Selected with a View of Illustrating the Symptoms and Cure of Diseases by a Reference to Morbid Anatomy, Diseases of the Brain and Nervous System, (Longmans, Green, London, 1831).

T. B. Curling, “Hydrocele,” in Practical Treatise on the Diseases of the Testis and of the Spermatic Cord and Scrotum,” (Longmans, Green, London, 1843), pp. 125–181.

K. Shimizu, K. Yamamoto, “Imaging of physiological functions by laser transillumination,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 348–352.

Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Guideline for the Care and Use of Laboratory Animals, (National Academy of Sciences–National Research Council, Washington, D.C., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Principle of transcutaneous fluorescent imaging.

Fig. 2
Fig. 2

Geometry of the theoretical model.

Fig. 3
Fig. 3

Experimental setup for PSF measurement.

Fig. 4
Fig. 4

Measured image of fluorescent source at 5-mm depth: (a) in clear water, (b) in scattering medium.

Fig. 5
Fig. 5

PSF obtained in the deconvolution of measured data: (a) two-dimensional PSF for 5-mm depth, (b) averaged PSF over all directions.

Fig. 6
Fig. 6

Depth dependence of measured PSF spread. Diamonds and curve are measurement and theoretical calculation, respectively.

Fig. 7
Fig. 7

Improvement by depth-dependent PSF (left and right figures are those before and after deconvolution, respectively): (a) 5-m depth, (b) 9-mm depth.

Fig. 8
Fig. 8

Intensity profiles of fluorescent images before (light curve) and after (dark curve) improvement: (a) 5-mm depth, (b) 9-mm depth.

Fig. 9
Fig. 9

Improvement in the contrast of the fluorescent image. Striped bars, the contrasts before improvement; solid bars, the contrasts after improvement.

Fig. 10
Fig. 10

Experimental setup for transcutaneous fluorescent imaging with a rat.

Fig. 11
Fig. 11

Improvement in transcutaneous fluorescent image of a rat's head (a) before and (b) after deconvolution with a PSF of 0.53-mm depth. Unit of scale is millimeters. (c) Intensity profile along the horizontal line at 30 mm.

Fig. 12
Fig. 12

Improvement in transcutaneous fluorescent image of a rat's abdomen (a) before and (b) after deconvolution with a PSF of 16-mm depth.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ɛ ( r ¯ ) = P 0 4 π δ ( r ¯ ) ,
F ¯ r i ( r ¯ ) = P 0 exp [ ( μ s + μ a ) r ] 4 π r 2 r ̂ ,
2 U d ( r ¯ ) κ d 2 U d ( r ¯ ) = ( 3 / 4 π ) P 0 ( μ s + μ a ) δ ( r ¯ ) ,
U d ( r ¯ ) = 3 P 0 ( 4 π ) 2 ( μ s + μ a ) exp ( κ d r ) r ,
F ¯ d ( r ¯ ) = P 0 4 π ( κ d + 1 r ) exp ( κ d r ) r r ̂ .
P ( ρ ) = 3 P 0 ( 4 π ) 2 { ( μ s + μ a ) + [ κ d + 1 ( ρ 2 + d 2 ) 1 / 2 ] × d ( ρ 2 + d 2 ) 1 / 2 } exp [ κ d ( ρ 2 + d 2 ) 1 / 2 ] ( ρ 2 + d 2 ) 1 / 2 ,

Metrics