Abstract

We propose a comprehensive protocol for the performance assessment of photon migration instruments. The protocol has been developed within the European Thematic Network MEDPHOT (optical methods for medical diagnosis and monitoring of diseases) and is based on five criteria: accuracy, linearity, noise, stability, and reproducibility. This protocol was applied to a total of 8 instruments with a set of 32 phantoms, covering a wide range of optical properties.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Biomedical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004).
  2. Special issue on Recent Developments in Biomedical Optics, Phys. Med. Biol. 49, (2004).
  3. Feature issue on Topics in Biomedical Optics, Appl. Opt. 10–11 (2005).
  4. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
    [CrossRef]
  5. J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrhamsson, S. Andersson-Engels, S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
    [CrossRef]
  6. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef] [PubMed]
  7. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  8. S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
    [CrossRef] [PubMed]
  9. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
    [CrossRef] [PubMed]
  10. S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  11. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef] [PubMed]
  12. U. Sukowsky, R. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
    [CrossRef]
  13. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
    [CrossRef] [PubMed]
  14. MEDPHOT Project, http://medphot.jrc.it .
  15. ISO Draft Guide, “International Vocabulary of Basic and General Terms in Metrology (VIM),” ISO DGUIDE 99999 (2004).
  16. J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
    [CrossRef] [PubMed]
  17. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Non-invasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
    [CrossRef]
  18. R. L. P. van Veen, W. Verkruijsse, H. J. C. M. Sterenborg, “Diffuse reflectance spectroscopy from 500 to 1060 nm by correction for inhomogenously distributed absorbers,” Opt. Lett. 27, 246–248 (2002).
    [CrossRef]
  19. J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
    [CrossRef]
  20. A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
    [CrossRef] [PubMed]
  21. M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
    [CrossRef]
  22. C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
    [CrossRef]
  23. J.-M. Tualle, E. Tinet, S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189, 211–220 (2001).
    [CrossRef]
  24. A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
    [CrossRef] [PubMed]
  25. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  26. R. C. Haskell, L. O. Svasaand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  27. A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1988).
    [CrossRef]
  28. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  29. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
    [CrossRef] [PubMed]

2005

Feature issue on Topics in Biomedical Optics, Appl. Opt. 10–11 (2005).

2004

Special issue on Recent Developments in Biomedical Optics, Phys. Med. Biol. 49, (2004).

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

ISO Draft Guide, “International Vocabulary of Basic and General Terms in Metrology (VIM),” ISO DGUIDE 99999 (2004).

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

2003

2002

2001

1999

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Non-invasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

1997

1996

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

U. Sukowsky, R. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

1995

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

1994

1992

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

1991

1989

1988

Abrhamsson, C.

Andersson, M.

J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
[CrossRef]

Andersson-Engels, S.

Avrillier, S.

J.-M. Tualle, E. Tinet, S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189, 211–220 (2001).
[CrossRef]

Bassi, A.

Bigio, I. J.

Biscotti, G.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

Boyer, J.

Chance, B.

Chikoidze, E.

J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
[CrossRef]

Cignini, F.

Comelli, D.

C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

Cubeddu, R.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Non-invasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Dam, J. S.

D'Andrea, C.

C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
[CrossRef]

Danesini, G.

Del Bianco, S.

Delpy, D. T.

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Dover, C.

Feng, T. C.

Ferrari, M.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Folestad, S.

Fuselier, T.

Giambattistelli, E.

J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
[CrossRef]

Grosenick, D.

U. Sukowsky, R. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
[CrossRef]

Hall, D. J.

Haskell, R. C.

Hebden, J. C.

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Johansson, J.

Johnson, D.

Johnson, T. M.

Josefson, M.

Kummrow, A.

M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
[CrossRef]

Liebert, A.

M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
[CrossRef]

Liu, D. L.

Macdonald, R.

M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
[CrossRef]

Madsen, S. J.

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

Martelli, F.

McAdams, M. S.

Messina, F.

Moeller, M.

M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
[CrossRef]

Moes, C. J. M.

Mourant, J. R.

Nilsson, A.

J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
[CrossRef]

Nilsson, A. M. K.

Oda, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Patterson, M. S.

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Pifferi, A.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Non-invasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
[CrossRef]

Prahl, S. A.

Quaresima, V.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

Rinneberg, H.

U. Sukowsky, R. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
[CrossRef]

Ruiz-Altisent, M.

Schubert, R.

U. Sukowsky, R. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

Sparen, A.

Spinelli, L.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

Sturesson, C.

Sukowsky, U.

U. Sukowsky, R. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

Svanberg, S.

Svasaand, L. O.

Swartling, J.

J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
[CrossRef]

Taroni, P.

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Non-invasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
[CrossRef]

Tinet, E.

J.-M. Tualle, E. Tinet, S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189, 211–220 (2001).
[CrossRef]

Torricelli, A.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range,” Opt. Lett. 28, 1138–1140 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Non-invasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
[CrossRef]

Tromberg, B. J.

Tsay, T. T.

Tualle, J.-M.

J.-M. Tualle, E. Tinet, S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189, 211–220 (2001).
[CrossRef]

Valentini, G.

C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Non-invasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Valero, C.

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

van Marle, J.

van Staveren, H. J.

van Veen, R. L. P.

Verkruijsse, W.

Wabnitz, H.

M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
[CrossRef]

Wassermann, B.

M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
[CrossRef]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Zaccanti, G.

Appl. Opt.

Feature issue on Topics in Biomedical Optics, Appl. Opt. 10–11 (2005).

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1988).
[CrossRef]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Non-invasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

Appl. Spectrosc.

ISO DGUIDE 99999

ISO Draft Guide, “International Vocabulary of Basic and General Terms in Metrology (VIM),” ISO DGUIDE 99999 (2004).

J. Opt. Soc. Am. A

J. Phys. D

C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675–1681 (2003).
[CrossRef]

Lasers Surg. Med.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Med. Phys.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Opt. Commun.

J.-M. Tualle, E. Tinet, S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189, 211–220 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy,” Phys. Med. Biol. 49, 685–699 (2004).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

U. Sukowsky, R. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Special issue on Recent Developments in Biomedical Optics, Phys. Med. Biol. 49, (2004).

Other

Biomedical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004).

MEDPHOT Project, http://medphot.jrc.it .

J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torricelli, P. Taroni, M. Andersson, A. Nilsson, S. Andersson-Engels, “Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 80–87 (2003).
[CrossRef]

M. Moeller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 290–297 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme of the fabrication of solid phantoms, following the recipe in Ref. 16.

Fig. 2
Fig. 2

Comparison of the estimate of (a) μa and (b) μs obtained by the eight instruments on the phantom B2. The measurements are performed in transmittance geometry for instruments 4, 5, and 6; in reflectance geometry with ρ = 2 cm for instruments 1, 3, 7, and 8; and in reflectance geometry with ρ variable in the interval 0.2–1.8 cm in steps of 0.2 cm for instrument 2.

Fig. 3
Fig. 3

Accuracy plot obtained with instrument 4 in a transmittance geometry at 785 nm on the whole phantom kit. Each diamond identifies the measured optical properties obtained for each of the 32 phantoms. The grid lines are set in correspondence to a first estimate of the conventionally true values for the phantom properties derived with the limitations described in Section 5.

Fig. 4
Fig. 4

Linearity plots obtained with instrument 3 in a reflectance geometry at 786 nm for ρ = 2 cm. Four different views of the data are presented, corresponding to the changes of μa, meas against (a) μa, conv and (b) μs, conv′, as well as to the changes of μs, meas′ against (c) μa, conv and (d) μs, conv′. The letters and the numbers in the figure legends identify the scattering and absorption labels of the phantoms. The straight lines are linear interpolations on the first four points.

Fig. 5
Fig. 5

Plot of the noise level for the measurement of μa expressed by the CV calculated for different values of the energy injected into the phantom. The data were obtained with instrument 4 in a transmittance geometry at 785 nm on the phantom Ta. The experimental measurements were fitted by use of as-free parameters μa and μs (dark gray); μa, μs and a free time shift t0 (light gray); or μa and t0 while fixing μs (black).

Fig. 6
Fig. 6

Stability plot for μa obtained on the phantom Ta, using (a) instrument 8 at 690 nm, in a reflectance geometry, with ρ = 2 cm and (b) instrument 4 at 785 nm, in a transmittance geometry. The dashed lines correspond to ±3% and ±10% changes with respect to the average of μa over the last 30 min of measurement.

Fig. 7
Fig. 7

Reproducibility plot for μa obtained on phantom Ta, using instrument 7 at 780 nm, in a reflectance geometry, with ρ = 1 cm. The plot represents the relative displacement of μa, meas obtained at each measurement day with respect to the average value calculated over 5 days.

Fig. 8
Fig. 8

Printout of the two-page reporting sheet, presenting general information on the instrument, the relevant figures of the MEDPHOT protocol, and some synthetic descriptors of the instrument performances derived from the five assays.

Tables (3)

Tables Icon

Table 1 Classification, Measurement Technique, and Owner Partner of Instruments Characterized with the Proposed Protocol

Tables Icon

Table 2 Relative Error on the Estimate of μsa

Tables Icon

Table 3 Relative Error on the Estimate of μsa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε = x meas x conv x conv .
x meas , i , j = f ( A i , S j ) .
CV ( E out ) = σ ( x ) x ,
x meas = f ( t i )

Metrics