Abstract

A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity–diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm−1. Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm−1, it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25, 437–445 (2004).
    [CrossRef] [PubMed]
  2. G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recording during functional brain activation,” Neuroimage. 17, 719–731 (2002).
    [CrossRef] [PubMed]
  3. S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
    [CrossRef] [PubMed]
  4. J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
    [CrossRef] [PubMed]
  5. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  6. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage. 13, 76–90 (2001).
    [CrossRef] [PubMed]
  7. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt. 42, 3054–3062 (2003).
    [CrossRef] [PubMed]
  8. L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  9. P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
    [CrossRef]
  10. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
    [CrossRef] [PubMed]
  11. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  12. W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. BME-39, 194–201 (1992).
    [CrossRef]
  13. A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
    [CrossRef] [PubMed]
  14. M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
    [CrossRef] [PubMed]
  15. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
    [CrossRef] [PubMed]
  16. M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage. 8, 69–78 (1998).
    [CrossRef] [PubMed]
  17. S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
    [CrossRef] [PubMed]
  18. H. Dehghani, D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
    [CrossRef]
  19. H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
    [CrossRef]
  20. S. R. Arridge, M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 378–388 (1995).
    [CrossRef]
  21. B. Pogue, K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998).
    [CrossRef]
  22. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42, 3095–3108 (2003).
    [CrossRef]
  23. E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
    [CrossRef] [PubMed]
  24. T. Hayashi, E. Okada, “Hybrid Monte Carlo–diffusion method for light propagation in tissue with a low scattering region,” Appl. Opt. 42, 2888–2896 (2003).
    [CrossRef] [PubMed]
  25. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [CrossRef] [PubMed]
  26. E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
    [CrossRef] [PubMed]
  27. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef] [PubMed]
  28. M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
    [CrossRef] [PubMed]
  29. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
    [CrossRef]
  30. S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).
    [CrossRef] [PubMed]
  31. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of the light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  32. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, D. C. O'Shea, ed. (SPIE, Bellingham, Wash., 2000).
  33. H. Dehghani, B. Brooksby, K. Bishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
    [CrossRef] [PubMed]
  34. S. R. Arridge, M. Schweiger, “Photon-measurement density function. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  35. E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, D. T. Delpy, “Experimental validation of Monte Carlo and finite-element methods for estimation of the optical path length in inhomogeneous tissue,” Appl. Opt. 35, 3362–3371 (1996).
    [CrossRef] [PubMed]
  36. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [CrossRef] [PubMed]
  37. W. F. Chong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]

2004 (2)

I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25, 437–445 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

2003 (6)

2002 (2)

G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recording during functional brain activation,” Neuroimage. 17, 719–731 (2002).
[CrossRef] [PubMed]

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

2001 (1)

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage. 13, 76–90 (2001).
[CrossRef] [PubMed]

2000 (3)

1999 (1)

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

1998 (4)

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage. 8, 69–78 (1998).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

B. Pogue, K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998).
[CrossRef]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org .
[CrossRef] [PubMed]

1997 (1)

1996 (2)

E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, D. T. Delpy, “Experimental validation of Monte Carlo and finite-element methods for estimation of the optical path length in inhomogeneous tissue,” Appl. Opt. 35, 3362–3371 (1996).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

1995 (4)

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of the light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density function. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

1993 (3)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

1992 (1)

W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. BME-39, 194–201 (1992).
[CrossRef]

1990 (1)

W. F. Chong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

1987 (1)

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

Anday, E.

Arridge, S. R.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, D. T. Delpy, “Experimental validation of Monte Carlo and finite-element methods for estimation of the optical path length in inhomogeneous tissue,” Appl. Opt. 35, 3362–3371 (1996).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of the light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density function. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 378–388 (1995).
[CrossRef]

Austin, T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Barnett, A. H.

Bishwanath, K.

H. Dehghani, B. Brooksby, K. Bishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Boas, D. A.

A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42, 3095–3108 (2003).
[CrossRef]

G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recording during functional brain activation,” Neuroimage. 17, 719–731 (2002).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage. 13, 76–90 (2001).
[CrossRef] [PubMed]

Brooksby, B.

H. Dehghani, B. Brooksby, K. Bishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Chance, B.

Cheng, X.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage. 13, 76–90 (2001).
[CrossRef] [PubMed]

Chong, W. F.

W. F. Chong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Cui, W.

W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. BME-39, 194–201 (1992).
[CrossRef]

Culver, J. P.

A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42, 3095–3108 (2003).
[CrossRef]

G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recording during functional brain activation,” Neuroimage. 17, 719–731 (2002).
[CrossRef] [PubMed]

Dale, A.

Dehghani, H.

H. Dehghani, B. Brooksby, K. Bishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

H. Dehghani, D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

Delpy, D. T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25, 437–445 (2004).
[CrossRef] [PubMed]

E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
[CrossRef] [PubMed]

E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

H. Dehghani, D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
[CrossRef]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage. 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, D. T. Delpy, “Experimental validation of Monte Carlo and finite-element methods for estimation of the optical path length in inhomogeneous tissue,” Appl. Opt. 35, 3362–3371 (1996).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of the light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Elwell, C. E.

I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25, 437–445 (2004).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Everdell, N.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage. 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, D. T. Delpy, “Experimental validation of Monte Carlo and finite-element methods for estimation of the optical path length in inhomogeneous tissue,” Appl. Opt. 35, 3362–3371 (1996).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage. 13, 76–90 (2001).
[CrossRef] [PubMed]

Gibson, A.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Hanson, K. M.

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

Hayashi, T.

Hebden, J. C.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of the light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Hong, L.

Hoshi, Y.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Ichikawa, N.

Jacques, S. L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Kato, C.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Kawaguchi, H.

Klose, A. D.

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Kohri, S.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Koizumi, H.

Kuge, Y.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Lee, C.-W.

I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25, 437–445 (2004).
[CrossRef] [PubMed]

Leung, T. S.

I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25, 437–445 (2004).
[CrossRef] [PubMed]

Li, C.

Maki, A.

Mandeville, J. B.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage. 13, 76–90 (2001).
[CrossRef] [PubMed]

Marota, J. J. A.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage. 13, 76–90 (2001).
[CrossRef] [PubMed]

Meek, J. H.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Murray, T.

Nioka, S.

Okada, E.

E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
[CrossRef] [PubMed]

E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
[CrossRef] [PubMed]

T. Hayashi, E. Okada, “Hybrid Monte Carlo–diffusion method for light propagation in tissue with a low scattering region,” Appl. Opt. 42, 2888–2896 (2003).
[CrossRef] [PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage. 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, D. T. Delpy, “Experimental validation of Monte Carlo and finite-element methods for estimation of the optical path length in inhomogeneous tissue,” Appl. Opt. 35, 3362–3371 (1996).
[CrossRef] [PubMed]

Ostrander, L. E.

W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. BME-39, 194–201 (1992).
[CrossRef]

Ovetsky, Y.

Patterson, M. S.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Paulsen, K. D.

H. Dehghani, B. Brooksby, K. Bishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

B. Pogue, K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998).
[CrossRef]

Pidikiti, D.

Pogue, B.

Pogue, B. W.

H. Dehghani, B. Brooksby, K. Bishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Prahl, S. A.

W. F. Chong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Sato, H.

Schweiger, M.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, D. T. Delpy, “Experimental validation of Monte Carlo and finite-element methods for estimation of the optical path length in inhomogeneous tissue,” Appl. Opt. 35, 3362–3371 (1996).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of the light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density function. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 378–388 (1995).
[CrossRef]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Smith, M.

I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25, 437–445 (2004).
[CrossRef] [PubMed]

Sorensen, A. G.

Strangman, G.

G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recording during functional brain activation,” Neuroimage. 17, 719–731 (2002).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage. 13, 76–90 (2001).
[CrossRef] [PubMed]

Tachtsidis, I.

I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25, 437–445 (2004).
[CrossRef] [PubMed]

Tamaki, N.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Tamura, M.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Thomas, R.

Thompson, J. H.

G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recording during functional brain activation,” Neuroimage. 17, 719–731 (2002).
[CrossRef] [PubMed]

Tuchin, V.

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, D. C. O'Shea, ed. (SPIE, Bellingham, Wash., 2000).

van der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Wang, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Welch, A. J.

W. F. Chong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wilson, B. C.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Worden, K.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Yamamoto, T.

Yamashita, Y.

Yusof, R. M.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Zhou, S.

Adv. Exp. Med. Biol. (1)

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

Appl. Opt. (10)

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt. 42, 3054–3062 (2003).
[CrossRef] [PubMed]

A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42, 3095–3108 (2003).
[CrossRef]

E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
[CrossRef] [PubMed]

T. Hayashi, E. Okada, “Hybrid Monte Carlo–diffusion method for light propagation in tissue with a low scattering region,” Appl. Opt. 42, 2888–2896 (2003).
[CrossRef] [PubMed]

E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
[CrossRef] [PubMed]

H. Dehghani, D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
[CrossRef]

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density function. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, D. T. Delpy, “Experimental validation of Monte Carlo and finite-element methods for estimation of the optical path length in inhomogeneous tissue,” Appl. Opt. 35, 3362–3371 (1996).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Chong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. BME-39, 194–201 (1992).
[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (3)

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of the light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

Neuroimage (3)

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage. 8, 69–78 (1998).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage. 13, 76–90 (2001).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recording during functional brain activation,” Neuroimage. 17, 719–731 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (7)

H. Dehghani, B. Brooksby, K. Bishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Physiol. Meas. (2)

I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25, 437–445 (2004).
[CrossRef] [PubMed]

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef] [PubMed]

Other (3)

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, D. C. O'Shea, ed. (SPIE, Bellingham, Wash., 2000).

S. R. Arridge, M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 378–388 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the adult head model.

Fig. 2
Fig. 2

Results of light propagation in the head model calculated by FEM and MCM: (a) normalized intensity, (b) mean optical path length, (c) partial optical path length in the superficial tissue, (d) partial optical path length in the CSF layer, (e) partial optical path length in the gray matter, and (f) partial optical path length in the white matter as a function of source–detector spacing.

Fig. 3
Fig. 3

Error in the results calculated by the FEM as a function of the transport scattering coefficient of the CSF layer for source–detector spacings of (a) 30 mm and (b) 40 mm. The results obtained by FEM are compared with those by MCM.

Fig. 4
Fig. 4

SSP in the x–z plane [(a1)–(f1)] and in the x–y plane [(a2)–(f2)] calculated by MCM (a, c, e) and FEM (b, d, f) for a source–detector spacing of 30 mm. The transport scattering coefficient of the CSF layer is 1.0 mm−1 (a, b), 0.3 mm−1 (c, d), and 0.01 mm−1 (e, f).

Fig. 5
Fig. 5

Cross sections of SSPs in the x–y plane along the source and detector calculated by FEM and MCM.

Fig. 6
Fig. 6

Error in the results calculated by FEM as a function of the thickness of the CSF layer.

Fig. 7
Fig. 7

Cross sections of SSPs in the x–y plane along the source and detector calculated by FEM and MCM. The thickness of the CSF layer was varied from 1 to 6 mm.

Fig. 8
Fig. 8

Error in the results calculated by FEM as a function of the thickness of the superficial tissue.

Fig. 9
Fig. 9

Cross sections of SSPs in the x–y plane along the source and detector calculated by FEM and MCM. The thickness of the superficial tissue was varied from 8 to 16 mm.

Tables (1)

Tables Icon

Table 1 Thickness and Optical Properties of the Adult Head Model

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

OD = ln ( I out I in ) μ a head L head + G ,
Δ OD = [ ln ( I out 1 I in ) ln ( I out 0 I in ) ] = ln ( I out 0 I out 1 ) Δ μ a head L head ,
Δ OD Δ μ a superficial L superficial + Δ μ a CSF L CSF + Δ μ a gray matter L gray matter + Δ μ a white matter L white matter .
L i OD μ a i .
SSP ( r ) L voxel ( r ) OD μ a voxel ( r ) .
κ ( r ) Φ ( r ) + μ a ( r ) Φ ( r ) = q 0 ( r ) ,
κ ( r ) = 1 3 [ μ a ( r ) + μ s ( r ) ] ,
I out ( ξ ) = κ ( ξ ) n ̂ Φ ( ξ ) ,
L i = Δ OD ( ξ ) / Δ μ a i .
J ( ξ , ζ ; r ) = Φ ( r ) Φ adj ( r ) ,
μ s ( r ) = μ s ( r ) / ( 1 g ) .

Metrics