Abstract

We present an algorithm that explicitly utilizes the wavelength dependence of tissue optical properties for diffuse optical tomography. We have previously shown that the method gives superior separation of absorption and scattering. Here the technique is described and tested in detail, and optimum wavelength sets for a broad range of chromophore combinations are discovered and analyzed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today, 48, 34–40 (1995).
    [CrossRef]
  2. A. G. Yodh, D. A. Boas, “Functional imaging with diffusing light,” in Biomedical Photonics (CRC Press, Boca Raton, Fla., 2003), Chap. 21, pp. 1–45.
  3. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
    [CrossRef] [PubMed]
  4. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
    [CrossRef] [PubMed]
  5. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
    [CrossRef] [PubMed]
  6. T. O. McBride, B. W. Pogue, S. D. Jiang, U. L. Osterberg, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
    [CrossRef]
  7. V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
    [CrossRef]
  8. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent mri and diffuse optical tomography of breast after Indocyanine Green enhancement,” Proc. Natl. Acad. USA 97, 2767–2772 (2000).
    [CrossRef]
  9. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
    [CrossRef] [PubMed]
  10. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
  11. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
    [CrossRef]
  12. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
    [CrossRef] [PubMed]
  13. D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
    [CrossRef] [PubMed]
  14. B. W. Pogue, K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of apriori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998).
    [CrossRef]
  15. B. Chance, M. T. Dait, C. Zhang, T. Hamaoka, F. Hagerman, “Recovery from excercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).
    [PubMed]
  16. R. Belardinelli, T. J. Barstow, J. Porszasz, K. Wasserman, “Skeletal muscle oxygenation during constant work rate exercise,” Med. Sci. Sports Exercise 27, 512–519 (1995).
    [CrossRef]
  17. K. W. Rundell, S. Nioka, B. Chance, “Haemoglobin/ myoglobin desaturation during speed skating.” Med. Sci. Sports. Exercise 29, 248–258 (1997).
    [CrossRef]
  18. H. Otaga, T. Yumoki, T. Yano, “Effect of arm cranking on the NIRS determined blood volume and oxygenation of human inactive and exercising vastus lateralis muscle,” J. Appl. Physiol. 86, 191–195 (2002).
    [CrossRef]
  19. B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
    [CrossRef] [PubMed]
  20. H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
    [CrossRef] [PubMed]
  21. S. R. Arridge, W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
    [CrossRef]
  22. Y. Pei, H. L. Graber, R. L. Barbour, “Normalized– constraint algorithm for minimizing inter–parameter crosstalk in dc optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  23. H. L. Graber, Y. Pei, R. L. Barbour, “Imaging of spatiotemporal coincident states by dc optical tomography,” IEEE Trans Med. Imaging 21, 852–866 (2002).
    [CrossRef] [PubMed]
  24. C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
    [CrossRef]
  25. Y. Xu, X. Gu, T. Khan, H. Jiang, “Absorption and scattering images of heterogenous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002).
    [CrossRef] [PubMed]
  26. E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. thesis (University College London, 2002).
  27. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
    [CrossRef] [PubMed]
  28. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, D. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
    [CrossRef] [PubMed]
  29. T. Durduran, A. G. Yodh, B. Chance, D. A. Boas, “Does the photon diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A. 14, 3358–3365 (1997).
    [CrossRef]
  30. D. J. Durian, “The diffusion coefficient depends on absorption,” Opt. Lett. 23, 1502–1504 (1998).
    [CrossRef]
  31. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  32. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
    [CrossRef]
  33. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  34. M. A. O'Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pennsylvania, 1996).
  35. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  36. S. R. Arridge, M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  37. S. J. Wright, J. Nocedal, eds., Numerical Optimization (Springer-Verlag, New York, 2000).
  38. L. N. Trefethen, D. Bau, eds., Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, 1997).
    [CrossRef]
  39. S. Prahl, “Optical properties spectra,” retrieved 16March2003, http://omlc.ogi.edu/spectra/index.html , 2001.
  40. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  41. T. Durduran, “Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, 2004).
  42. B. W. Pogue, T. O. McBride, J. Prewit, K. D. Osterberg, U. L. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  43. D. R. White, H. Q. Woodward, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
    [CrossRef] [PubMed]
  44. H. Q. Woodward, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
    [CrossRef]

2004

H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, D. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
[CrossRef] [PubMed]

2003

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

2002

Y. Xu, X. Gu, T. Khan, H. Jiang, “Absorption and scattering images of heterogenous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002).
[CrossRef] [PubMed]

H. Otaga, T. Yumoki, T. Yano, “Effect of arm cranking on the NIRS determined blood volume and oxygenation of human inactive and exercising vastus lateralis muscle,” J. Appl. Physiol. 86, 191–195 (2002).
[CrossRef]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

H. L. Graber, Y. Pei, R. L. Barbour, “Imaging of spatiotemporal coincident states by dc optical tomography,” IEEE Trans Med. Imaging 21, 852–866 (2002).
[CrossRef] [PubMed]

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

2001

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. D. Jiang, U. L. Osterberg, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
[CrossRef]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Y. Pei, H. L. Graber, R. L. Barbour, “Normalized– constraint algorithm for minimizing inter–parameter crosstalk in dc optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

2000

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent mri and diffuse optical tomography of breast after Indocyanine Green enhancement,” Proc. Natl. Acad. USA 97, 2767–2772 (2000).
[CrossRef]

1999

1998

1997

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

K. W. Rundell, S. Nioka, B. Chance, “Haemoglobin/ myoglobin desaturation during speed skating.” Med. Sci. Sports. Exercise 29, 248–258 (1997).
[CrossRef]

T. Durduran, A. G. Yodh, B. Chance, D. A. Boas, “Does the photon diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A. 14, 3358–3365 (1997).
[CrossRef]

1995

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today, 48, 34–40 (1995).
[CrossRef]

R. Belardinelli, T. J. Barstow, J. Porszasz, K. Wasserman, “Skeletal muscle oxygenation during constant work rate exercise,” Med. Sci. Sports Exercise 27, 512–519 (1995).
[CrossRef]

1993

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

1992

B. Chance, M. T. Dait, C. Zhang, T. Hamaoka, F. Hagerman, “Recovery from excercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).
[PubMed]

1987

D. R. White, H. Q. Woodward, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

1986

H. Q. Woodward, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
[CrossRef]

Arridge, S. R.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

S. R. Arridge, W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Ballesteros, J. R.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Barbour, R. L.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

H. L. Graber, Y. Pei, R. L. Barbour, “Imaging of spatiotemporal coincident states by dc optical tomography,” IEEE Trans Med. Imaging 21, 852–866 (2002).
[CrossRef] [PubMed]

Y. Pei, H. L. Graber, R. L. Barbour, “Normalized– constraint algorithm for minimizing inter–parameter crosstalk in dc optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Barstow, T. J.

R. Belardinelli, T. J. Barstow, J. Porszasz, K. Wasserman, “Skeletal muscle oxygenation during constant work rate exercise,” Med. Sci. Sports Exercise 27, 512–519 (1995).
[CrossRef]

Belardinelli, R.

R. Belardinelli, T. J. Barstow, J. Porszasz, K. Wasserman, “Skeletal muscle oxygenation during constant work rate exercise,” Med. Sci. Sports Exercise 27, 512–519 (1995).
[CrossRef]

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[CrossRef]

Bevilacqua, F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[CrossRef]

Bigio, I. J.

Boas, D.

Boas, D. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

T. Durduran, A. G. Yodh, B. Chance, D. A. Boas, “Does the photon diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A. 14, 3358–3365 (1997).
[CrossRef]

A. G. Yodh, D. A. Boas, “Functional imaging with diffusing light,” in Biomedical Photonics (CRC Press, Boca Raton, Fla., 2003), Chap. 21, pp. 1–45.

Boyer, J.

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Busch, T. M.

H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
[CrossRef] [PubMed]

Butler, J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Cerussi, A.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Cerussi, A. E.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[CrossRef]

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
[CrossRef]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent mri and diffuse optical tomography of breast after Indocyanine Green enhancement,” Proc. Natl. Acad. USA 97, 2767–2772 (2000).
[CrossRef]

T. Durduran, A. G. Yodh, B. Chance, D. A. Boas, “Does the photon diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A. 14, 3358–3365 (1997).
[CrossRef]

K. W. Rundell, S. Nioka, B. Chance, “Haemoglobin/ myoglobin desaturation during speed skating.” Med. Sci. Sports. Exercise 29, 248–258 (1997).
[CrossRef]

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today, 48, 34–40 (1995).
[CrossRef]

B. Chance, M. T. Dait, C. Zhang, T. Hamaoka, F. Hagerman, “Recovery from excercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).
[PubMed]

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
[CrossRef] [PubMed]

Choe, R.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Corlu, A.

Culver, J. P.

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, D. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Dait, M. T.

B. Chance, M. T. Dait, C. Zhang, T. Hamaoka, F. Hagerman, “Recovery from excercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).
[PubMed]

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Durduran, T.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

T. Durduran, A. G. Yodh, B. Chance, D. A. Boas, “Does the photon diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A. 14, 3358–3365 (1997).
[CrossRef]

T. Durduran, “Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, 2004).

Durian, D. J.

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Emanuele, M. J.

H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
[CrossRef] [PubMed]

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Fantini, S.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Flock, S. T.

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Franceschini, M. A.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
[CrossRef] [PubMed]

Fuselier, T.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Glatstein, E.

H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
[CrossRef] [PubMed]

Graber, H. L.

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
[CrossRef] [PubMed]

Gu, X.

Hagerman, F.

B. Chance, M. T. Dait, C. Zhang, T. Hamaoka, F. Hagerman, “Recovery from excercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).
[PubMed]

Hamaoka, T.

B. Chance, M. T. Dait, C. Zhang, T. Hamaoka, F. Hagerman, “Recovery from excercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).
[PubMed]

Hammond, S. M.

D. R. White, H. Q. Woodward, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

Hielscher, A. H.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Hillman, E. M. C.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. thesis (University College London, 2002).

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Holcombe, R. F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Hueber, D. M.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Jakubowski, D.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[CrossRef]

Jiang, H.

Jiang, S. D.

T. O. McBride, B. W. Pogue, S. D. Jiang, U. L. Osterberg, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

Johnson, T. M.

Khan, T.

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Lasker, J. M.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Li, A.

Lionheart, W. R. B.

Löcker, M.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Ma, H. Y.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

McBride, T. O.

T. O. McBride, B. W. Pogue, S. D. Jiang, U. L. Osterberg, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, J. Prewit, K. D. Osterberg, U. L. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

Miller, E. L.

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, D. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

Mourant, J. R.

Nioka, S.

K. W. Rundell, S. Nioka, B. Chance, “Haemoglobin/ myoglobin desaturation during speed skating.” Med. Sci. Sports. Exercise 29, 248–258 (1997).
[CrossRef]

Ntziachristos, V.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent mri and diffuse optical tomography of breast after Indocyanine Green enhancement,” Proc. Natl. Acad. USA 97, 2767–2772 (2000).
[CrossRef]

O'Leary, M. A.

M. A. O'Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pennsylvania, 1996).

Osterberg, K. D.

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. D. Jiang, U. L. Osterberg, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Otaga, H.

H. Otaga, T. Yumoki, T. Yano, “Effect of arm cranking on the NIRS determined blood volume and oxygenation of human inactive and exercising vastus lateralis muscle,” J. Appl. Physiol. 86, 191–195 (2002).
[CrossRef]

Pattanayak, D. N.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Patterson, M. S.

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Paulsen, K. D.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

B. W. Pogue, K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of apriori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998).
[CrossRef]

Paulsen, U. L.

Pei, Y.

Pogue, B. W.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. D. Jiang, U. L. Osterberg, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewit, K. D. Osterberg, U. L. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

B. W. Pogue, K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of apriori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998).
[CrossRef]

Poplack, S. P.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Porszasz, J.

R. Belardinelli, T. J. Barstow, J. Porszasz, K. Wasserman, “Skeletal muscle oxygenation during constant work rate exercise,” Med. Sci. Sports Exercise 27, 512–519 (1995).
[CrossRef]

Prewit, J.

Putt, M. E.

H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
[CrossRef] [PubMed]

Rundell, K. W.

K. W. Rundell, S. Nioka, B. Chance, “Haemoglobin/ myoglobin desaturation during speed skating.” Med. Sci. Sports. Exercise 29, 248–258 (1997).
[CrossRef]

Schmitz, C. H.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent mri and diffuse optical tomography of breast after Indocyanine Green enhancement,” Proc. Natl. Acad. USA 97, 2767–2772 (2000).
[CrossRef]

Schweiger, M.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Shah, N.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Shin, D. B.

H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
[CrossRef] [PubMed]

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Tromberg, B. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[CrossRef]

Wallace, D.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Wang, H.

H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
[CrossRef] [PubMed]

Wasserman, K.

R. Belardinelli, T. J. Barstow, J. Porszasz, K. Wasserman, “Skeletal muscle oxygenation during constant work rate exercise,” Med. Sci. Sports Exercise 27, 512–519 (1995).
[CrossRef]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

White, D. R.

D. R. White, H. Q. Woodward, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

H. Q. Woodward, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
[CrossRef]

Wilson, B. C.

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Woodward, H. Q.

D. R. White, H. Q. Woodward, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

H. Q. Woodward, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
[CrossRef]

Xu, Y.

Yano, T.

H. Otaga, T. Yumoki, T. Yano, “Effect of arm cranking on the NIRS determined blood volume and oxygenation of human inactive and exercising vastus lateralis muscle,” J. Appl. Physiol. 86, 191–195 (2002).
[CrossRef]

Yodh, A.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today, 48, 34–40 (1995).
[CrossRef]

Yodh, A. G.

H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent mri and diffuse optical tomography of breast after Indocyanine Green enhancement,” Proc. Natl. Acad. USA 97, 2767–2772 (2000).
[CrossRef]

T. Durduran, A. G. Yodh, B. Chance, D. A. Boas, “Does the photon diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A. 14, 3358–3365 (1997).
[CrossRef]

A. G. Yodh, D. A. Boas, “Functional imaging with diffusing light,” in Biomedical Photonics (CRC Press, Boca Raton, Fla., 2003), Chap. 21, pp. 1–45.

Yumoki, T.

H. Otaga, T. Yumoki, T. Yano, “Effect of arm cranking on the NIRS determined blood volume and oxygenation of human inactive and exercising vastus lateralis muscle,” J. Appl. Physiol. 86, 191–195 (2002).
[CrossRef]

Zhang, C.

B. Chance, M. T. Dait, C. Zhang, T. Hamaoka, F. Hagerman, “Recovery from excercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).
[PubMed]

Zhang, Q.

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, D. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Acad. Radiol.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Am. J. Physiol.

B. Chance, M. T. Dait, C. Zhang, T. Hamaoka, F. Hagerman, “Recovery from excercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).
[PubMed]

Appl. Opt.

Br. J. Radiol.

D. R. White, H. Q. Woodward, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

H. Q. Woodward, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
[CrossRef]

Breast Cancer Res. Treatment

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
[CrossRef]

Cancer Res.

H. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64, 7553–7561 (2004).
[CrossRef] [PubMed]

IEEE Signal Process. Mag.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[CrossRef]

IEEE Trans Med. Imaging

H. L. Graber, Y. Pei, R. L. Barbour, “Imaging of spatiotemporal coincident states by dc optical tomography,” IEEE Trans Med. Imaging 21, 852–866 (2002).
[CrossRef] [PubMed]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Appl. Physiol.

H. Otaga, T. Yumoki, T. Yano, “Effect of arm cranking on the NIRS determined blood volume and oxygenation of human inactive and exercising vastus lateralis muscle,” J. Appl. Physiol. 86, 191–195 (2002).
[CrossRef]

J. Cereb. Blood Flow Metab.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A.

T. Durduran, A. G. Yodh, B. Chance, D. A. Boas, “Does the photon diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A. 14, 3358–3365 (1997).
[CrossRef]

Med. Phys.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Med. Sci. Sports Exercise

R. Belardinelli, T. J. Barstow, J. Porszasz, K. Wasserman, “Skeletal muscle oxygenation during constant work rate exercise,” Med. Sci. Sports Exercise 27, 512–519 (1995).
[CrossRef]

Med. Sci. Sports. Exercise

K. W. Rundell, S. Nioka, B. Chance, “Haemoglobin/ myoglobin desaturation during speed skating.” Med. Sci. Sports. Exercise 29, 248–258 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Phys. Med. Biol.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Phys. Today

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today, 48, 34–40 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. USA

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Proc. Natl. Acad. USA

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent mri and diffuse optical tomography of breast after Indocyanine Green enhancement,” Proc. Natl. Acad. USA 97, 2767–2772 (2000).
[CrossRef]

Radiology

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

T. O. McBride, B. W. Pogue, S. D. Jiang, U. L. Osterberg, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Other

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. thesis (University College London, 2002).

A. G. Yodh, D. A. Boas, “Functional imaging with diffusing light,” in Biomedical Photonics (CRC Press, Boca Raton, Fla., 2003), Chap. 21, pp. 1–45.

T. Durduran, “Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, 2004).

M. A. O'Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pennsylvania, 1996).

S. J. Wright, J. Nocedal, eds., Numerical Optimization (Springer-Verlag, New York, 2000).

L. N. Trefethen, D. Bau, eds., Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, 1997).
[CrossRef]

S. Prahl, “Optical properties spectra,” retrieved 16March2003, http://omlc.ogi.edu/spectra/index.html , 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Each point represents a set of five wavelengths. Residual norm, R, and condition number, κ, of each set are calculated for four chromophores HbO2, HbR, H2O, and lipid as described in Section 3. Points 1, 2, and 3 are selected as extreme points with high and low R and κ values.

Fig. 2
Fig. 2

Geometry of the circular media used in the simulations. Thirty-two source–detector pairs are equally spaced along the circumference. The first medium (a) has four absorbing objects, and the second medium (b) includes an additional scattering object. Both media are 7 cm in diameter with objects of 1.6 cm in diameter.

Fig. 3
Fig. 3

Image reconstruction results of the first medium. Images of chromophores HbO2, HbR, H2O, and lipid are shown in consecutive rows. The leftmost column shows the expected target object locations, and the rest of the columns display the reconstructed images of chromophores for sets 1, 2, and 3.

Fig. 4
Fig. 4

Reconstructed images for the second target medium. Target images of HbO2, HbR, H2O, lipid, and A are shown in the first, second, third, fourth, and fifth rows of the leftmost column, respectively. The images shown in the second to fourth columns are reconstructed with the multispectral method for sets 1, 2, and 3. The images in the rightmost column are obtained with conventional DOT image reconstruction with the wavelengths used in set 3.

Fig. 5
Fig. 5

Histogram of optimum wavelength distributions with five wavelengths and four chromophores (HbO2, HbR, H2O, lipid). Each wavelength count (distinguished by different patterns) in a set is normalized for ease of demonstration.

Fig. 6
Fig. 6

Histograms for the optimum wavelength sets obtained with two absorption chromophores (HbO2 and HbR) for different numbers of wavelengths N: (a) N = 3, (b) N = 4, (c) N = 5.

Fig. 7
Fig. 7

Histograms for the optimum wavelength sets obtained with three absorption chromophores (HbO2, HbR, and H2O) for different numbers of wavelengths N: (a) N = 4, (b) N = 5, (c) N = 6.

Fig. 8
Fig. 8

Target and reconstructed images of A and b obtained with the multispectral method with 15 wavelengths sampled from the 650–930-nm range at 20-nm intervals.

Fig. 9
Fig. 9

Contour plots of the log of the error functions. (a) E(A, b) is poorly scaled, as demonstrated by the presence of narrow contour valleys. The global minimum is located at Ao = 9000 and bo = 1.3. (b) The same error function expressed in terms of ζ and β has a well-defined minimum (ζo = 0.44, βo = 0.14), with circular contours illustrating the improvement in scaling.

Fig. 10
Fig. 10

The multispectral reconstruction of the target medium in Fig. 8, using the new set of variables (ζ, β), provides accurate A and b images as shown in (a) and (b), respectively. The A and b images displayed in (c) and (d), respectively, are reconstructed with the conventional method, i.e., fitting reconstructed μs(λ) images at 15 wavelengths to the simplified Mie scattering form (Aλb).

Fig. 11
Fig. 11

Simplified schematic of the parallel-plate diffuse optical tomography instrument. The female subject lies in a prone position, and soft compression is applied with a source plate. Continuous-wave measurements are accomplished with a lens-coupled CCD in transmission mode. The orientation of image slices are shown beneath the instrument.

Fig. 12
Fig. 12

Conventional DOT method was used to obtain (a) the reconstructed total hemoglobin concentration, (b) the blood oxygen saturation, (c) the water concentration, and (d) the scattering images of a subject with invasive ductal carcinoma near the nipple area. Note that the water concentration (c) drops to negative values.

Fig. 13
Fig. 13

(a) Total hemoglobin concentration, (b) blood oxygen saturation, (c) water concentration, and (d) scattering images of the same subject, reconstructed with the multispectral method. Reliable images were obtained compared with conventional DOT.

Tables (2)

Tables Icon

Table 1 Wavelength Sets Chosen from Fig. 1 and the Corresponding Condition Numbers (κ) and Residual Norms (R)

Tables Icon

Table 2 Chromophore Concentration and Scattering Coefficient Prefactor Values of the Background and the Test Objects

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

D ( λ ) ϕ ( λ , ω ) + [ μ a ( λ ) + i ω υ ] ϕ ( λ , ω ) = q 0 ( λ , ω ) .
ϕ + D d ϕ α d n ̂ = 0 ,
μ a ( λ ) = l = 1 L l ( λ ) C l .
μ s ( λ ) = A λ b .
χ 2 = 1 2 n = 1 N j = 1 S i = 1 M j [ F j , i ( λ n ) P j , i ( λ n ) ] 2 ,
χ 2 = 1 2 y T y .
χ 2 ( x ) = χ 2 ( x 0 ) + ( χ 2 ( x 0 ) ) T ( x x 0 ) + 1 2 ( x x 0 ) T H ( x 0 ) ( x x 0 ) + ,
0 = y T J + 1 2 [ Δ x T ( H T + H ) + 2 Diag ( H ) Δ x ] .
Δ x = ( J T J ) 1 J T y ,
y = [ y λ 1 y λ 2 y λ N ] , J = [ J λ 1 ( C 1 ) J λ 1 ( C 2 ) J λ 1 ( C L ) J λ 1 ( A ) J λ 1 ( b ) J λ 2 ( C 1 ) J λ 2 ( C 2 ) J λ 2 ( C L ) J λ 2 ( A ) J λ 2 ( b ) J λ N ( C 1 ) J λ N ( C 2 ) J λ N ( C L ) J λ N ( A ) J λ N ( b ) ] .
J λ n ( x ) = [ P 1 , 1 ( λ n ) x 1 P 1 , 1 ( λ n ) x 2 P 1 , 1 ( λ n ) x B P 1 , M 1 ( λ n ) x 1 P 1 , M 1 ( λ n ) x 2 P 1 , M 1 ( λ n ) x B P j , i ( λ n ) x 1 P j , i ( λ n ) x 2 P j , i ( λ n ) x B P S , M S ( λ n ) x 1 P S , M S ( λ n ) x 2 P S , M S ( λ n ) x B ]
P j , i ( λ ) x k = { μ a ( λ ) C l , k P j , i ( λ ) μ a ( k ) ( λ ) = l ( λ ) P j , i ( λ ) μ a ( k ) ( λ ) if x k = C l , k ( l th tissue chromiogire ) μ s ( λ ) A k P j , i ( λ ) μ s ( k ) ( λ ) = λ b k P j , i ( λ ) μ s ( k ) ( λ ) if x k = A k ( scattering prefactor ) μ s ( λ ) b k P j , i ( λ ) μ s ( k ) ( λ ) = A k λ b k In ( λ ) P j , i ( λ ) μ s ( k ) ( λ ) if x k = b k ( scattering power ) ,
P j , i μ a ( k ) = 1 ϕ ( r j , r i ) G ( r k , r i ) ϕ ( r j , r k ) ,
P j , i μ s ( k ) = 3 D 2 1 ϕ ( r j , r i ) G ( r k , r i ) ϕ ( r j , r k ) ,
χ 2 x k = n = 1 N j = 1 S i = 1 M j [ F j , i ( λ n ) P j , i ( λ n ) ] [ P j , i ( λ n ) x k ] ,
2 Ψ ( ω ) + η ( ω ) Ψ ( ω ) = q 0 ( ω ) γ ,
η 0 = ( 2 γ γ ) + μ a γ 2 , ξ = 1 υ γ 2 .
D = D + Δ D , μ a = μ a + Δ μ a .
1 h ( λ b , Ã ) l l ( λ ) λ b ( Δ A Ã C l + Δ C l ) = 1 ,
h ( λ b , Ã ) = 1 3 Ã ( 2 λ b / 3 A λ b / 3 A 2 λ b / 3 Ã λ b / 3 Ã ) .
h ( Ã ) = 1 3 Ã ( 2 1 / 3 A 1 / 3 A 2 1 / 3 Ã 1 / 3 Ã ) .
[ 1 ( λ 1 ) λ 1 b 2 ( λ 1 ) λ 1 b L ( λ 1 ) λ 1 b 1 ( λ N ) λ N b 2 ( λ N ) λ N b L ( λ N ) λ N b ] × ( Δ A Ã h ( Ã ) [ C 1 C L ] + 1 h ( Ã ) [ Δ C 1 Δ C L ] ) = [ 1 1 ] ,
E w = 1.
[ μ a ( λ 1 ) μ a ( λ N ) ] = [ 1 ( λ 1 ) L ( λ 1 ) 1 ( λ N ) L ( λ N ) ] [ C 1 C L ] .
μ s = a ( 2 π ρ n m ) b λ b ,
E ( A , b ) = i = 1 i = N { log ( A λ i b ) log [ μ s ( A o , b o , λ i ) ] } 2 ,
r = 1 N i = 1 i = N log ( λ i ) , t = N [ N i = 1 i = N log 2 ( λ i ) ( r N ) 2 ] 1 / 2
E ( ζ , β ) = i = 1 i = N { ζ r t β t β log ( λ i ) log [ μ s ( A o , b o , λ i ) ] } 2 = N ζ 2 + N β 2 ζ { 2 i = 1 i = N log [ μ s ( A o , b o , λ i ) ] } + β { 2 r t i = 1 i = N log [ μ s ( A o , b o , λ i ) ] + 2 t i = 1 i = N log ( λ i ) log [ μ s ( A o , b o , λ i ) ] } + i = 1 i = N log 2 [ μ s ( A o , b o , λ i ) ] .

Metrics