Abstract

Most models of light propagation through tissue assume that the scattering properties of various tissue layers are the same. We present evidence that the scattering coefficient of cervical epithelium varies by a factor of 3 within the epithelium owing to variations in nuclear density and to the presence of keratin. We estimated the scattering coefficient from regions of normal and precancerous cervical epithelium by fitting reflectance measurements from confocal images to an exponential function of depth based on Beer's law of attenuation. The results suggest that the normal cervix is characterized by highly variable scattering in the superficial epithelium, low scattering in the intermediate epithelium, and high scattering in the basal and stromal regions. In high-grade dysplasia, high scattering from high-density nuclei is observed throughout the entire epithelium.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
    [CrossRef] [PubMed]
  2. Z. Ge, K. T. Schomacker, N. S. Nishioka, “Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques,” Appl. Spectrosc. 52, 833–345 (1998).
    [CrossRef]
  3. F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
    [CrossRef] [PubMed]
  4. M. S. Feld, “Spectral pathology using reflected light,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998).
  5. G. Zonios, L. T. Perelman, V. Backman, R. Manahoran, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
    [CrossRef]
  6. I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
    [CrossRef] [PubMed]
  7. R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, S. Schantz, “Tissue autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis,” Cancer Lett. 82, 33–41 (1994).
    [CrossRef] [PubMed]
  8. R. Alfano, A. Pradhan, G. Tang, S. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
    [CrossRef]
  9. R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [CrossRef] [PubMed]
  10. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
    [CrossRef] [PubMed]
  11. J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
    [CrossRef] [PubMed]
  12. F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. (Baltimore) 156, 1597–1601 (1996).
  13. Z. Haung, H. Zeng, I. Havzavi, D. McLean, H. Lui, “Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements,” Opt. Lett. 26, 1782–1784 (2001).
    [CrossRef]
  14. A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
    [CrossRef] [PubMed]
  15. T. Collier, A. Lacy, A. Malpica, M. Follen, R. Richards-Kortum, “Near real time confocal microscopy of amelanotic tissue: detection of dysplasia in ex-vivo cervical tissue,” Acad. Radiol. 9, 504–512 (2002).
    [CrossRef] [PubMed]
  16. M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, S. Gonzalez, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology,” J. Invest. Dermatol. 117, 1137–1143 (2001).
    [CrossRef] [PubMed]
  17. J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).
  18. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
    [CrossRef] [PubMed]
  19. F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.
  20. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
    [CrossRef] [PubMed]
  21. K. Sokolov, R. Drezek, K. Gossage, R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?” Opt. Express 5, 302–317 (1999), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  22. W. K. Hong, M. B. Sporn, “Recent advances in chemoprevention of cancer,” Science 278, 1073–1077 (1997).
    [CrossRef] [PubMed]
  23. I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
    [CrossRef] [PubMed]
  24. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
    [CrossRef] [PubMed]
  25. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
    [CrossRef] [PubMed]
  26. R. J. Hunter, M. S. Patterson, T. J. Farrell, J. E. Hayward, “Hemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
    [CrossRef] [PubMed]
  27. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
    [CrossRef] [PubMed]
  28. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurements from tissue,” Appl. Opt. 31, 7429–7436 (1998).
    [CrossRef]
  29. L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Express 27, 104–106 (2002), http://www.opticsexpress.org .
  30. W. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  31. J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Doubleintegrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 33, 399–410 (1993).
    [CrossRef]
  32. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef] [PubMed]
  33. T. Foster, E. Hull, “Optical tomography and spectroscopy of tissue: theory, instrumentation, model and human studies II,” in Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 355–364 (1997).
  34. S. Lin, L. Wang, S. Jacques, F. Tittel, “Measurement of tissue optical properties using oblique incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
    [CrossRef] [PubMed]
  35. D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
    [CrossRef] [PubMed]
  36. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. Savory, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectrometry,” Appl. Opt. 35, 1756–1766 (1996).
    [CrossRef] [PubMed]
  37. R. Hornung, T. H. Pham, K. A. Keefel, M. W. Berns, Y. Tadir, B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14, 2908–2916 (1999).
    [CrossRef] [PubMed]
  38. S. K. Sung, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004).
    [CrossRef]
  39. J. Qu, C. MacAuley, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
    [CrossRef] [PubMed]
  40. C. Smithpeter, A. Dunn, A. Welch, R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998).
    [CrossRef]
  41. M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. 13, 46–52 (1996).
    [CrossRef]
  42. J. Schmitt, A. Knuttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. 11, 2226–2235 (1994).
    [CrossRef]
  43. T. Collier, D. Arifler, A. Malpica, M. Follen, R. Richards-Kortum, “Determination of the epithelial tissue scattering coefficient using confocal microscopy,” Sel. Top. Quantum Electron. 9, 307–313 (2003).
    [CrossRef]
  44. J. Key, E. R. Davies, R. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
    [CrossRef] [PubMed]
  45. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Nearinfrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef] [PubMed]
  46. B. Luck, A. Bovic, R. Richards-Kortum, “Segmenting cervical epithelial nuclei from confocal images using Gaussian Markov random fields,” in Proceedings of the IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2003), Vol. 2, pp. 14–17.
  47. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  48. T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
    [CrossRef] [PubMed]
  49. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  50. A. Zoumi, A. Yeh, B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

2004 (1)

S. K. Sung, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004).
[CrossRef]

2003 (4)

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef] [PubMed]

T. Collier, D. Arifler, A. Malpica, M. Follen, R. Richards-Kortum, “Determination of the epithelial tissue scattering coefficient using confocal microscopy,” Sel. Top. Quantum Electron. 9, 307–313 (2003).
[CrossRef]

2002 (6)

A. Zoumi, A. Yeh, B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

R. J. Hunter, M. S. Patterson, T. J. Farrell, J. E. Hayward, “Hemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef] [PubMed]

L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Express 27, 104–106 (2002), http://www.opticsexpress.org .

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

T. Collier, A. Lacy, A. Malpica, M. Follen, R. Richards-Kortum, “Near real time confocal microscopy of amelanotic tissue: detection of dysplasia in ex-vivo cervical tissue,” Acad. Radiol. 9, 504–512 (2002).
[CrossRef] [PubMed]

2001 (7)

M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, S. Gonzalez, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology,” J. Invest. Dermatol. 117, 1137–1143 (2001).
[CrossRef] [PubMed]

J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef] [PubMed]

Z. Haung, H. Zeng, I. Havzavi, D. McLean, H. Lui, “Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements,” Opt. Lett. 26, 1782–1784 (2001).
[CrossRef]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

1999 (3)

1998 (5)

Z. Ge, K. T. Schomacker, N. S. Nishioka, “Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques,” Appl. Spectrosc. 52, 833–345 (1998).
[CrossRef]

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
[CrossRef] [PubMed]

B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurements from tissue,” Appl. Opt. 31, 7429–7436 (1998).
[CrossRef]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Nearinfrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

C. Smithpeter, A. Dunn, A. Welch, R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998).
[CrossRef]

1997 (4)

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

W. K. Hong, M. B. Sporn, “Recent advances in chemoprevention of cancer,” Science 278, 1073–1077 (1997).
[CrossRef] [PubMed]

S. Lin, L. Wang, S. Jacques, F. Tittel, “Measurement of tissue optical properties using oblique incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
[CrossRef] [PubMed]

I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[CrossRef] [PubMed]

1996 (6)

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[CrossRef] [PubMed]

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. (Baltimore) 156, 1597–1601 (1996).

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. Savory, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectrometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. 13, 46–52 (1996).
[CrossRef]

1995 (1)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

1994 (3)

R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, S. Schantz, “Tissue autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis,” Cancer Lett. 82, 33–41 (1994).
[CrossRef] [PubMed]

J. Qu, C. MacAuley, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
[CrossRef] [PubMed]

J. Schmitt, A. Knuttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. 11, 2226–2235 (1994).
[CrossRef]

1993 (2)

J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Doubleintegrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 33, 399–410 (1993).
[CrossRef]

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

1991 (1)

J. Key, E. R. Davies, R. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

1990 (2)

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

W. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (1)

Alfano, R.

R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, S. Schantz, “Tissue autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis,” Cancer Lett. 82, 33–41 (1994).
[CrossRef] [PubMed]

R. Alfano, A. Pradhan, G. Tang, S. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
[CrossRef]

Althausen, A. F.

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. (Baltimore) 156, 1597–1601 (1996).

Antonescu, C.

J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).

Arifler, D.

S. K. Sung, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004).
[CrossRef]

T. Collier, D. Arifler, A. Malpica, M. Follen, R. Richards-Kortum, “Determination of the epithelial tissue scattering coefficient using confocal microscopy,” Sel. Top. Quantum Electron. 9, 307–313 (2003).
[CrossRef]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

Backman, V.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manahoran, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[CrossRef]

Badizadegan, K.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Bays, R.

Beek, J. F.

J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Doubleintegrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 33, 399–410 (1993).
[CrossRef]

Berns, M. W.

R. Hornung, T. H. Pham, K. A. Keefel, M. W. Berns, Y. Tadir, B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14, 2908–2916 (1999).
[CrossRef] [PubMed]

Bigio, I. J.

I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Bouma, B. E.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Bovic, A.

B. Luck, A. Bovic, R. Richards-Kortum, “Segmenting cervical epithelial nuclei from confocal images using Gaussian Markov random fields,” in Proceedings of the IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2003), Vol. 2, pp. 14–17.

Boyer, J.

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Braichotte, D.

Brezinski, M. E.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Brookner, C.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Burke, G.

Busam, J.

J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).

Carraro, A.

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

Charles, C.

J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).

Cheong, W.

W. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

T. Collier, D. Arifler, A. Malpica, M. Follen, R. Richards-Kortum, “Determination of the epithelial tissue scattering coefficient using confocal microscopy,” Sel. Top. Quantum Electron. 9, 307–313 (2003).
[CrossRef]

T. Collier, A. Lacy, A. Malpica, M. Follen, R. Richards-Kortum, “Near real time confocal microscopy of amelanotic tissue: detection of dysplasia in ex-vivo cervical tissue,” Acad. Radiol. 9, 504–512 (2002).
[CrossRef] [PubMed]

Conn, R. L.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Nearinfrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Crum, C. P.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Dasari, R. R.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Davies, E. R.

J. Key, E. R. Davies, R. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Denisenko, A. M.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Deutsch, T. F.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
[CrossRef] [PubMed]

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. (Baltimore) 156, 1597–1601 (1996).

Dmitrovsky, E.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef] [PubMed]

Dragnev, K. H.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef] [PubMed]

Drezek, R.

S. K. Sung, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004).
[CrossRef]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

K. Sokolov, R. Drezek, K. Gossage, R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?” Opt. Express 5, 302–317 (1999), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Dunn, A.

Dwyer, P. J.

M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, S. Gonzalez, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology,” J. Invest. Dermatol. 117, 1137–1143 (2001).
[CrossRef] [PubMed]

Ediger, M. N.

Enquist, H.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Nearinfrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Farrell, T. J.

R. J. Hunter, M. S. Patterson, T. J. Farrell, J. E. Hayward, “Hemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

Feld, M. S.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manahoran, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[CrossRef]

M. S. Feld, “Spectral pathology using reflected light,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998).

Feldchtein, F. I.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Fitzmaurice, M.

Flotte, T.

M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, S. Gonzalez, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology,” J. Invest. Dermatol. 117, 1137–1143 (2001).
[CrossRef] [PubMed]

Follen, M.

S. K. Sung, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004).
[CrossRef]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

T. Collier, D. Arifler, A. Malpica, M. Follen, R. Richards-Kortum, “Determination of the epithelial tissue scattering coefficient using confocal microscopy,” Sel. Top. Quantum Electron. 9, 307–313 (2003).
[CrossRef]

T. Collier, A. Lacy, A. Malpica, M. Follen, R. Richards-Kortum, “Near real time confocal microscopy of amelanotic tissue: detection of dysplasia in ex-vivo cervical tissue,” Acad. Radiol. 9, 504–512 (2002).
[CrossRef] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Foster, T.

T. Foster, E. Hull, “Optical tomography and spectroscopy of tissue: theory, instrumentation, model and human studies II,” in Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 355–364 (1997).

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Fuselier, T.

Ge, Z.

Gelikonov, G. V.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Gelikonov, V. M.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Georgakoudi, I.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Gladkova, N. D.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Glasgold, M.

R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, S. Schantz, “Tissue autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis,” Cancer Lett. 82, 33–41 (1994).
[CrossRef] [PubMed]

Glasgold, R.

R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, S. Schantz, “Tissue autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis,” Cancer Lett. 82, 33–41 (1994).
[CrossRef] [PubMed]

Gonzalez, S.

M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, S. Gonzalez, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology,” J. Invest. Dermatol. 117, 1137–1143 (2001).
[CrossRef] [PubMed]

J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).

Gossage, K.

Guillaud, M.

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Halpern, A.

J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).

Haung, Z.

Havzavi, I.

Hayward, J. E.

R. J. Hunter, M. S. Patterson, T. J. Farrell, J. E. Hayward, “Hemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

Hee, M. R.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Hester, K.

J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).

Hong, W. K.

W. K. Hong, M. B. Sporn, “Recent advances in chemoprevention of cancer,” Science 278, 1073–1077 (1997).
[CrossRef] [PubMed]

Hornung, R.

R. Hornung, T. H. Pham, K. A. Keefel, M. W. Berns, Y. Tadir, B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14, 2908–2916 (1999).
[CrossRef] [PubMed]

Hull, E.

T. Foster, E. Hull, “Optical tomography and spectroscopy of tissue: theory, instrumentation, model and human studies II,” in Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 355–364 (1997).

Hunter, R. J.

R. J. Hunter, M. S. Patterson, T. J. Farrell, J. E. Hayward, “Hemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

Izatt, J. A.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Jackson, R. C.

J. Key, E. R. Davies, R. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Jacques, S.

Johnson, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Johnson, T. M.

Keefel, K. A.

R. Hornung, T. H. Pham, K. A. Keefel, M. W. Berns, Y. Tadir, B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14, 2908–2916 (1999).
[CrossRef] [PubMed]

Kempe, M.

M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. 13, 46–52 (1996).
[CrossRef]

Key, J.

J. Key, E. R. Davies, R. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Knuttel, A.

J. Schmitt, A. Knuttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. 11, 2226–2235 (1994).
[CrossRef]

Koenig, F.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
[CrossRef] [PubMed]

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. (Baltimore) 156, 1597–1601 (1996).

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Nearinfrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Kollias, N.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
[CrossRef] [PubMed]

Kuranov, R. V.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Kuznetzova, I. A.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Lacy, A.

T. Collier, A. Lacy, A. Malpica, M. Follen, R. Richards-Kortum, “Near real time confocal microscopy of amelanotic tissue: detection of dysplasia in ex-vivo cervical tissue,” Acad. Radiol. 9, 504–512 (2002).
[CrossRef] [PubMed]

Lam, S.

Larne, R.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
[CrossRef] [PubMed]

Lin, S.

Lotan, R.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Luck, B.

B. Luck, A. Bovic, R. Richards-Kortum, “Segmenting cervical epithelial nuclei from confocal images using Gaussian Markov random fields,” in Proceedings of the IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2003), Vol. 2, pp. 14–17.

Lui, H.

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

MacAuley, C.

Mahadevan-Jansen, A.

A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef] [PubMed]

T. Collier, D. Arifler, A. Malpica, M. Follen, R. Richards-Kortum, “Determination of the epithelial tissue scattering coefficient using confocal microscopy,” Sel. Top. Quantum Electron. 9, 307–313 (2003).
[CrossRef]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

T. Collier, A. Lacy, A. Malpica, M. Follen, R. Richards-Kortum, “Near real time confocal microscopy of amelanotic tissue: detection of dysplasia in ex-vivo cervical tissue,” Acad. Radiol. 9, 504–512 (2002).
[CrossRef] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Manahoran, R.

McGovern, F. J.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
[CrossRef] [PubMed]

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. (Baltimore) 156, 1597–1601 (1996).

McLean, D.

Menaker, G.

M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, S. Gonzalez, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology,” J. Invest. Dermatol. 117, 1137–1143 (2001).
[CrossRef] [PubMed]

Monnier, P.

Mourant, J. R.

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Muller, M. G.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Mycek, M. A.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef] [PubMed]

Nishioka, N. S.

Palcic, B.

Patterson, M. S.

R. J. Hunter, M. S. Patterson, T. J. Farrell, J. E. Hayward, “Hemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pavlova, I.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Perelman, L. T.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manahoran, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[CrossRef]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pfefer, T. J.

Pham, T. H.

R. Hornung, T. H. Pham, K. A. Keefel, M. W. Berns, Y. Tadir, B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14, 2908–2916 (1999).
[CrossRef] [PubMed]

Pickering, J. W.

J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Doubleintegrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 33, 399–410 (1993).
[CrossRef]

Pinto, J.

R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, S. Schantz, “Tissue autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis,” Cancer Lett. 82, 33–41 (1994).
[CrossRef] [PubMed]

Pitts, J. D.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef] [PubMed]

Pogue, B. W.

Pradhan, A.

Prahl, S.

W. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Prahl, S. A.

J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Doubleintegrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 33, 399–410 (1993).
[CrossRef]

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

Qu, J.

Quan, L.

L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Express 27, 104–106 (2002), http://www.opticsexpress.org .

Rajadhyaksha, M.

M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, S. Gonzalez, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology,” J. Invest. Dermatol. 117, 1137–1143 (2001).
[CrossRef] [PubMed]

Ramanujam, N.

L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Express 27, 104–106 (2002), http://www.opticsexpress.org .

Richards-Kortum, R.

S. K. Sung, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004).
[CrossRef]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

T. Collier, D. Arifler, A. Malpica, M. Follen, R. Richards-Kortum, “Determination of the epithelial tissue scattering coefficient using confocal microscopy,” Sel. Top. Quantum Electron. 9, 307–313 (2003).
[CrossRef]

T. Collier, A. Lacy, A. Malpica, M. Follen, R. Richards-Kortum, “Near real time confocal microscopy of amelanotic tissue: detection of dysplasia in ex-vivo cervical tissue,” Acad. Radiol. 9, 504–512 (2002).
[CrossRef] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

K. Sokolov, R. Drezek, K. Gossage, R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?” Opt. Express 5, 302–317 (1999), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. Smithpeter, A. Dunn, A. Welch, R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998).
[CrossRef]

A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[CrossRef] [PubMed]

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

B. Luck, A. Bovic, R. Richards-Kortum, “Segmenting cervical epithelial nuclei from confocal images using Gaussian Markov random fields,” in Proceedings of the IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2003), Vol. 2, pp. 14–17.

Robert, D.

Rudolph, W.

M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. 13, 46–52 (1996).
[CrossRef]

Sachs, D.

J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).

Savage, H.

R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, S. Schantz, “Tissue autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis,” Cancer Lett. 82, 33–41 (1994).
[CrossRef] [PubMed]

Savory, J.

Schantz, S.

R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, S. Schantz, “Tissue autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis,” Cancer Lett. 82, 33–41 (1994).
[CrossRef] [PubMed]

Schmitt, J.

J. Schmitt, A. Knuttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. 11, 2226–2235 (1994).
[CrossRef]

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef] [PubMed]

Z. Ge, K. T. Schomacker, N. S. Nishioka, “Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques,” Appl. Spectrosc. 52, 833–345 (1998).
[CrossRef]

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
[CrossRef] [PubMed]

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. (Baltimore) 156, 1597–1601 (1996).

Sergeev, A. M.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Sevick-Muraca, E.

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Shakhova, N. M.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Sheets, E. E.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Shimada, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Nearinfrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Sloboda, R. D.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef] [PubMed]

Smithpeter, C.

Sokolov, K.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef] [PubMed]

K. Sokolov, R. Drezek, K. Gossage, R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?” Opt. Express 5, 302–317 (1999), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Southern, J. F.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Sporn, M. B.

W. K. Hong, M. B. Sporn, “Recent advances in chemoprevention of cancer,” Science 278, 1073–1077 (1997).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Doubleintegrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 33, 399–410 (1993).
[CrossRef]

Streltzova, O. S.

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

Sun, D.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Sung, S. K.

S. K. Sung, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004).
[CrossRef]

Swanson, E. A.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Tadir, Y.

R. Hornung, T. H. Pham, K. A. Keefel, M. W. Berns, Y. Tadir, B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14, 2908–2916 (1999).
[CrossRef] [PubMed]

Tang, G.

Tearney, G. J.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Thennadil, S. N.

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Thomas, G. A.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Tittel, F.

Tromberg, B. J.

A. Zoumi, A. Yeh, B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

R. Hornung, T. H. Pham, K. A. Keefel, M. W. Berns, Y. Tadir, B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14, 2908–2916 (1999).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Van Dam, J.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manahoran, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[CrossRef]

van den Bergh, H.

van Gemert, M. J. C.

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Doubleintegrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 33, 399–410 (1993).
[CrossRef]

van Wierington, N.

J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Doubleintegrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 33, 399–410 (1993).
[CrossRef]

Wagnieres, G.

Wahl, S.

Wallace, M. B.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Wang, L.

Welch, A.

C. Smithpeter, A. Dunn, A. Welch, R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998).
[CrossRef]

W. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Welch, A. J.

Wells, P. N.

J. Key, E. R. Davies, R. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Welsch, E.

M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. 13, 46–52 (1996).
[CrossRef]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Yadlowsky, M.

J. Schmitt, A. Knuttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. 11, 2226–2235 (1994).
[CrossRef]

Yeh, A.

A. Zoumi, A. Yeh, B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

Zeng, H.

Zhang, Q.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Zonios, G.

Zoumi, A.

A. Zoumi, A. Yeh, B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

Acad. Dermatol. (1)

J. Busam, K. Hester, C. Charles, D. Sachs, C. Antonescu, S. Gonzalez, A. Halpern, “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Acad. Dermatol. 137, 923–929 (2001).

Acad. Radiol. (1)

T. Collier, A. Lacy, A. Malpica, M. Follen, R. Richards-Kortum, “Near real time confocal microscopy of amelanotic tissue: detection of dysplasia in ex-vivo cervical tissue,” Acad. Radiol. 9, 504–512 (2002).
[CrossRef] [PubMed]

Am. J. Obstet. Gynecol. (1)

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Appl. Opt. (10)

G. Zonios, L. T. Perelman, V. Backman, R. Manahoran, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef] [PubMed]

B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurements from tissue,” Appl. Opt. 31, 7429–7436 (1998).
[CrossRef]

J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Doubleintegrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 33, 399–410 (1993).
[CrossRef]

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

S. Lin, L. Wang, S. Jacques, F. Tittel, “Measurement of tissue optical properties using oblique incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
[CrossRef] [PubMed]

J. Qu, C. MacAuley, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
[CrossRef] [PubMed]

C. Smithpeter, A. Dunn, A. Welch, R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998).
[CrossRef]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. Savory, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectrometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Cancer Lett. (1)

R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, S. Schantz, “Tissue autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis,” Cancer Lett. 82, 33–41 (1994).
[CrossRef] [PubMed]

Circulation (1)

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Gastroenterology (1)

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620–1629 (2001).
[CrossRef] [PubMed]

Hum. Reprod. (1)

R. Hornung, T. H. Pham, K. A. Keefel, M. W. Berns, Y. Tadir, B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14, 2908–2916 (1999).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Biomed. Opt. (6)

S. K. Sung, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004).
[CrossRef]

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[CrossRef] [PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, S. Gonzalez, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology,” J. Invest. Dermatol. 117, 1137–1143 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. 13, 46–52 (1996).
[CrossRef]

J. Schmitt, A. Knuttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. 11, 2226–2235 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Urol. (Baltimore) (1)

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. (Baltimore) 156, 1597–1601 (1996).

Lasers Surg. Med. (1)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Opt. Express (2)

K. Sokolov, R. Drezek, K. Gossage, R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?” Opt. Express 5, 302–317 (1999), http://www.opticsexpress.org .
[CrossRef] [PubMed]

L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Express 27, 104–106 (2002), http://www.opticsexpress.org .

Opt. Lett. (1)

Photochem. Photobiol. (2)

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol. (5)

R. J. Hunter, M. S. Patterson, T. J. Farrell, J. E. Hayward, “Hemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[CrossRef] [PubMed]

J. Key, E. R. Davies, R. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Nearinfrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

A. Zoumi, A. Yeh, B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

Science (1)

W. K. Hong, M. B. Sporn, “Recent advances in chemoprevention of cancer,” Science 278, 1073–1077 (1997).
[CrossRef] [PubMed]

Sel. Top. Quantum Electron. (1)

T. Collier, D. Arifler, A. Malpica, M. Follen, R. Richards-Kortum, “Determination of the epithelial tissue scattering coefficient using confocal microscopy,” Sel. Top. Quantum Electron. 9, 307–313 (2003).
[CrossRef]

Urology (1)

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342–345 (1998).
[CrossRef] [PubMed]

Other (4)

M. S. Feld, “Spectral pathology using reflected light,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998).

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. M. Denisenko, O. S. Streltzova, “Design and performance of an endoscopic OCT system for in vivo studies of human mucosa,” presented at the Conference on Lasers and Electro-Optics, San Francisco, Calif., 3–8 May 1998.

T. Foster, E. Hull, “Optical tomography and spectroscopy of tissue: theory, instrumentation, model and human studies II,” in Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 355–364 (1997).

B. Luck, A. Bovic, R. Richards-Kortum, “Segmenting cervical epithelial nuclei from confocal images using Gaussian Markov random fields,” in Proceedings of the IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2003), Vol. 2, pp. 14–17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Confocal images of cervical epithelium (a, b) and stroma (c, d) before and after the application of acetic acid. Nuclei are barely visible in the images taken without acetic acid (a, c) but are significantly brighter (arrows) after the application of acetic acid (b, d).

Fig. 2
Fig. 2

Confocal images of typical regions within the cervix. In the superficial epithelium a bright speckled pattern attributed to keratin is found in approximately 50% of the images. The pattern is confined to the cell periphery in some superficial epithelia (a) but is found throughout the epithelium in others (b). An even, low-density pattern of nuclei is associated with normal squamous cells in normal superficial epithelium (c), whereas an irregular pattern of high-density nuclei is associated with the presence of dysplasia (d). Near the basement membrane (e), cell nuclei are also dense but much smaller. In the stroma (f), collagen bundles are not easily resolved but produce a bright irregular pattern.

Fig. 3
Fig. 3

Comparison of en face confocal images (b, d, f, h) and transverse sectioned H&E stained images (a, c, e, g). Changes in nuclear density are consistent between the confocal (b, f) and the H&E-stained sections (a, e). The prominence of a bright speckled pattern in the confocal images (d, f) appears proportional to a thickening of the cell perimeter in the H&E-stained sections (c, e) and is attributed to keratin. Confocal images (h) and H&E-stained sections (g) of stromal tissue both show the prominence of the collagen matrix. All histologic images are shown as black-and-white images with the grey scale inverted and with the location of the confocal image plane (dashed line).

Fig. 4
Fig. 4

Typical confocal signal attenuation as a function of depth within a cervical biopsy. Both the mean nuclear intensity and the mean image intensity show a similar decay in two regions: the superficial layer (10–90 μm) and near the basement membrane (130–160 μm). (a–c) Sample images used to acquire the data are shown at the indicated depths (arrows).

Fig. 5
Fig. 5

Exponential fits to the nuclear and mean image reflectance data for three regions of a sample biopsy.

Fig. 6
Fig. 6

Scattering coefficients extracted from the various regions of the cervical biopsies. In the superficial and intermediate epithelia the scattering coefficient is governed largely by the presence or absence of keratin or high-density nuclei. Scattering values are consistently higher in the basal and stromal regions of the biopsies.

Tables (2)

Tables Icon

Table 1 Distribution of Image Patterns from Various Depths within the Cervix

Tables Icon

Table 2 Report Scattering Coefficients from Various Tissue Types

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( z ) = I 0 exp ( μ t z ) R exp ( μ t z ) = I 0 R exp ( 2 μ t z ) ,
I ( z ) = I 0 exp ( 2 μ t z ) R + BG ,

Metrics