Abstract

Enamel and dentin are the primary components of human teeth. Both of them have a strong polarization effect. We designed a polarization-sensitive optical coherence tomography (PSOCT) system to study the spatially resolved scattering and polarization phenomena of teeth. The system is constructed in free space to avoid the complexity of polarization control in fiber-based PSOCT. The structural features of enamel were evaluated in five human teeth that had no visible evidence of caries. The teeth were subsequently sectioned in mesial distal orientation and coronal orientation. Then the structural aspects of dentin were evaluated. OCT images were made of the mantel dentin near the dentin–enamel junction. Five teeth with interproximal and occlusal caries were also studied. With two channel and phase-retardation images, PSOCT provided better functional contrast and more detailed structural information than conventional OCT. For a better description of the measured PSOCT data, we classify these features by two types, i.e., the local textural features and the global structural features. This study indicates that PSOCT has the potential to be a powerful tool for research of dental formation and caries diagnosis.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
    [CrossRef]
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  5. X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
    [CrossRef] [PubMed]
  6. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
    [CrossRef] [PubMed]
  7. U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [CrossRef]
  8. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
    [CrossRef] [PubMed]
  9. H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27, 1702–1704 (2002).
    [CrossRef]
  10. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003), http://www.opticsexpress.org .
  11. M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. DaSilva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
    [CrossRef]
  12. J. F. de Boer, T. E. Milner, “Review of polarization sensitive optical tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
    [CrossRef] [PubMed]
  13. J. F. de Boer, Z. Chen, J. S. Nelson, S. Srinivas, A. Malekafzali, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3, 212–218 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  14. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, A. F. Fercher, “Measurement and imaging of birefringence and optical axis orientation by phase resolved polarization-sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  15. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
    [CrossRef]
  16. J. F. de Boer, T. E. Milner, J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
    [CrossRef]
  17. C. Saxer, J. de Boer, B. Park, Y. Zhao, Z. Chen, J. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
    [CrossRef]
  18. B. W. Colston, U. S. Sathyam, L. B. Da Silva, M. J. Everett, P. Stroeve, L. L. Otis, “Dental OCT,” Opt. Express 3, 230–238 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  19. B. W. Colston, M. J. Everett, L. B. DaSilva, L. L. Otis, P. Stroeve, H. Nathel, “Imaging hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37, 3582–3585 (1998).
    [CrossRef]
  20. A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998).
    [CrossRef]
  21. X.-J. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, J. S. Nelson, “Characterization of dentin and enamel by use of optical coherence tomography,” Appl. Opt. 38, 2092–2096 (1999).
    [CrossRef]
  22. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
    [CrossRef]
  23. D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
    [CrossRef] [PubMed]
  24. E. N. Marieb, Human Anatomy and Physiology, 5th ed. (Pearson Education, N.J., 2001), pp. 898–901.
  25. A. Gh. Podoleanu, “Unbalanced versus balanced operation in a optical coherence tomography system,” Appl. Opt. 39, 173–182 (2000).
    [CrossRef]
  26. X. Wang, L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
    [CrossRef] [PubMed]
  27. K. C. Hadley, A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic and achiral media,” J. Biomed. Opt. 7, 291–299 (2002).
    [CrossRef] [PubMed]
  28. J. Li, G. Yao, L. V. Wang, “Degree of polarization in laser speckles from turbid media: implication in tissue optics,” J. Biomed. Opt. 7, 307–312 (2002).
    [CrossRef] [PubMed]
  29. V. Sankaran, J. T. Walsh, D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
    [CrossRef] [PubMed]
  30. H. Kitamura, M. Oda, J. A Hess, Color Atlas of Human Oral Histology, 1st ed. (Ishiyaku EuroAmerica, St. Louis, 1992).
  31. Y. Chen, L. Otis, Q. Zhu, “Study of tissue polarization with polarization-sensitive OCT by linearly and circularly polarized probing light,” in Biomedical Optics, Proc. SPIE, (to be published).

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003), http://www.opticsexpress.org .

2002 (9)

J. F. de Boer, T. E. Milner, “Review of polarization sensitive optical tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27, 1702–1704 (2002).
[CrossRef]

X. Wang, L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef] [PubMed]

K. C. Hadley, A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic and achiral media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

J. Li, G. Yao, L. V. Wang, “Degree of polarization in laser speckles from turbid media: implication in tissue optics,” J. Biomed. Opt. 7, 307–312 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[CrossRef] [PubMed]

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (4)

1999 (2)

1998 (4)

1997 (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

1995 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Baumgartner, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998).
[CrossRef]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003), http://www.opticsexpress.org .

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Breunig, T. M.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[CrossRef] [PubMed]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y.

Y. Chen, L. Otis, Q. Zhu, “Study of tissue polarization with polarization-sensitive OCT by linearly and circularly polarized probing light,” in Biomedical Optics, Proc. SPIE, (to be published).

Chen, Z.

Colston, B. W.

Da Silva, L. B.

DaSilva, L. B.

de Boer, J.

de Boer, J. F.

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003), http://www.opticsexpress.org .

J. F. de Boer, T. E. Milner, “Review of polarization sensitive optical tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
[CrossRef]

J. F. de Boer, T. E. Milner, J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[CrossRef]

X.-J. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, J. S. Nelson, “Characterization of dentin and enamel by use of optical coherence tomography,” Appl. Opt. 38, 2092–2096 (1999).
[CrossRef]

J. F. de Boer, Z. Chen, J. S. Nelson, S. Srinivas, A. Malekafzali, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3, 212–218 (1998), http://www.opticsexpress.org .
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

Dichtl, S.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998).
[CrossRef]

Ding, Z.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

Everett, M. J.

Featherstone, J. D. B.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, A. F. Fercher, “Measurement and imaging of birefringence and optical axis orientation by phase resolved polarization-sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fried, D.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[CrossRef] [PubMed]

Fujimoto, J. G.

U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Goetzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hadley, K. C.

K. C. Hadley, A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic and achiral media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hess, J. A

H. Kitamura, M. Oda, J. A Hess, Color Atlas of Human Oral Histology, 1st ed. (Ishiyaku EuroAmerica, St. Louis, 1992).

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998).
[CrossRef]

Huang, D.

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Kitamura, H.

H. Kitamura, M. Oda, J. A Hess, Color Atlas of Human Oral Histology, 1st ed. (Ishiyaku EuroAmerica, St. Louis, 1992).

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Krtner, F. X.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Le, C.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[CrossRef] [PubMed]

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Li, J.

J. Li, G. Yao, L. V. Wang, “Degree of polarization in laser speckles from turbid media: implication in tissue optics,” J. Biomed. Opt. 7, 307–312 (2002).
[CrossRef] [PubMed]

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Maitland, D. J.

V. Sankaran, J. T. Walsh, D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[CrossRef] [PubMed]

Malekafzali, A.

Marieb, E. N.

E. N. Marieb, Human Anatomy and Physiology, 5th ed. (Pearson Education, N.J., 2001), pp. 898–901.

Miao, J.

Milner, T. E.

Morgner, U.

Moritz, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998).
[CrossRef]

Nathel, H.

Nelson, J.

Nelson, J. S.

Oda, M.

H. Kitamura, M. Oda, J. A Hess, Color Atlas of Human Oral Histology, 1st ed. (Ishiyaku EuroAmerica, St. Louis, 1992).

Otis, L.

Y. Chen, L. Otis, Q. Zhu, “Study of tissue polarization with polarization-sensitive OCT by linearly and circularly polarized probing light,” in Biomedical Optics, Proc. SPIE, (to be published).

Otis, L. L.

Park, B.

Park, B. H.

Pashley, D. H.

Pierce, M. C.

Pircher, M.

Pitris, C.

U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Podoleanu, A. Gh.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ren, H.

Robl, B.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Sankaran, V.

V. Sankaran, J. T. Walsh, D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[CrossRef] [PubMed]

Sathyam, U. S.

Sattmann, H.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998).
[CrossRef]

Saxer, C.

Schoenenberger, K.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Shafi, S.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[CrossRef] [PubMed]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Sperr, W.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998).
[CrossRef]

Srinivas, S.

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stroeve, P.

Swanson, E. A.

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003), http://www.opticsexpress.org .

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

van Gemert, M. J. C.

Vitkin, A.

K. C. Hadley, A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic and achiral media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

Walsh, J. T.

V. Sankaran, J. T. Walsh, D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[CrossRef] [PubMed]

Wang, L. V.

X. Wang, L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef] [PubMed]

J. Li, G. Yao, L. V. Wang, “Degree of polarization in laser speckles from turbid media: implication in tissue optics,” J. Biomed. Opt. 7, 307–312 (2002).
[CrossRef] [PubMed]

Wang, X.

X. Wang, L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef] [PubMed]

Wang, X. J.

Wang, X.-J.

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Xie, J.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[CrossRef] [PubMed]

Yao, G.

J. Li, G. Yao, L. V. Wang, “Degree of polarization in laser speckles from turbid media: implication in tissue optics,” J. Biomed. Opt. 7, 307–312 (2002).
[CrossRef] [PubMed]

Yun, S. H.

Zhang, Y.

Zhao, Y.

Zhu, Q.

Y. Chen, L. Otis, Q. Zhu, “Study of tissue polarization with polarization-sensitive OCT by linearly and circularly polarized probing light,” in Biomedical Optics, Proc. SPIE, (to be published).

Appl. Opt. (3)

Caries Res. (1)

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

J. Biomed. Opt. (7)

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[CrossRef] [PubMed]

X. Wang, L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef] [PubMed]

K. C. Hadley, A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic and achiral media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

J. Li, G. Yao, L. V. Wang, “Degree of polarization in laser speckles from turbid media: implication in tissue optics,” J. Biomed. Opt. 7, 307–312 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, “Review of polarization sensitive optical tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (8)

U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. DaSilva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
[CrossRef]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
[CrossRef]

J. F. de Boer, T. E. Milner, J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[CrossRef]

C. Saxer, J. de Boer, B. Park, Y. Zhao, Z. Chen, J. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
[CrossRef] [PubMed]

H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27, 1702–1704 (2002).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Other (4)

H. Kitamura, M. Oda, J. A Hess, Color Atlas of Human Oral Histology, 1st ed. (Ishiyaku EuroAmerica, St. Louis, 1992).

Y. Chen, L. Otis, Q. Zhu, “Study of tissue polarization with polarization-sensitive OCT by linearly and circularly polarized probing light,” in Biomedical Optics, Proc. SPIE, (to be published).

E. N. Marieb, Human Anatomy and Physiology, 5th ed. (Pearson Education, N.J., 2001), pp. 898–901.

A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the PSOCT system: SLD, superluminescent diode; P, polarizer; BS, beam splitter; PBS, polarizing beam splitters; QWP1, QWP2, quarter-wave plates. The detected signals are filtered by two identical bandpass filters. After analog-to-digital conversion, the raw data are then processed by computer.

Fig. 2
Fig. 2

(a) V-channel image, (b) H-channel image, (c) phase-retardation image by Eq. (5), (d) intensity image of R = Ev2 + EH2. The bright reflection band inside is the DEJ.

Fig. 3
Fig. 3

Horizontal black-and-white band structure is originated from the form birefringence. (a) Phase retardation image from the cervical side of the tooth near the DEJ. Vertical bands formed by enamel rods are aligned normal to the structure of the form birefringent bands. (b) Another image from the coronal aspect of a tooth after it was sectioned in mesial distal and coronal orientation. Strong form birefringence is observed.

Fig. 4
Fig. 4

(a) Phase-retardation image of a tooth with occlusal carious lesion. The image size is 5 mm in length and 3.6 mm in depth. The rich textures in the rectangular region may relate to the mineral composition, which is a sign of caries affection. (b) Amplified carious region. (c) Phase-retardation image with interproximal caries affection (left root, right crown)

Fig. 5
Fig. 5

Images of one tooth sample in the mesial distal orientation obtained from (a) CP and (b) LP configurations. The images showed similarities in local features of dentin (longer arrows to the left of the images) and differences in global form birefringence patterns of enamel (shorter arrows to the right of the images). Image size is 4 mm long and 3.6 mm deep.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E = [ V H ] ,
S ( φ , θ ) = [ cos 2 θ + sin 2 θ exp ( j 2 φ ) cos θ sin θ ( 1 exp ( j 2 φ ) ) cos θ sin θ ( 1 exp ( j 2 φ ) ) cos 2 θ exp ( j 2 φ ) + sin 2 θ ] ,
E V = A V exp [ ( Δ z / l ) 2 ] sin θ ,
E H = A H exp [ ( Δ z / l ) 2 ] cos θ ,
φ = arctan ( E V / E H ) ,
R = E V 2 + E H 2 .
E = [ V H ] = [ cos 2 θ + sin 2 θ exp ( j φ ) cos θ sin θ ( 1 exp ( j φ ) ) ] .

Metrics