Abstract

It is currently impossible to consistently predict kidney graft viability and function before and after transplantation. We explored optical spectroscopy to assess the degree of ischemic damage in kidney tissue. Tunable UV laser excitation was used to record autofluorescence images, at different spectral ranges, of injured and contralateral control rat kidneys to reveal the excitation conditions that offered optimal contrast. Autofluorescence and near-infrared cross-polarized light-scattering imaging were both used to monitor changes in intensity and spectral characteristics, as a function of exposure time to ischemic injury. These two modalities provided different temporal behaviors, arguably arising from two different mechanisms providing direct correlation of intrinsic optical signatures to ischemic injury time.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
    [Crossref] [PubMed]
  2. C. H. Barlow, B. Chance, “Ischemic areas in perfused rat hearts: measurement by NADH fluorescence photography,” Science 193, 909–910 (1976).
    [Crossref] [PubMed]
  3. R. S. Balaban, L. J. Mandel, “Coupling of aerobic metabolism to active ion transport in the kidney,” J. Physiol. 304, 331–348 (1980).
  4. A. Mayevsky, B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–540 (1982).
    [Crossref] [PubMed]
  5. A. P. Koretsky, L. A. Katz, R. S. Balaban, “Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard,” Am. J. Physiol. 253, H856–H862 (1987).
    [PubMed]
  6. G. Renault, M. Sinet, M. Muffat-Joly, J. Cornillaut, J. J. Pocidalo, “In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia,” Lasers Surg. Med. 5, 111–122 (1985).
    [Crossref] [PubMed]
  7. Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
    [Crossref] [PubMed]
  8. T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, “Changes in the redox distribution of rat liver by ischemia,” Anal. Biochem. 206, 131–136 (1992).
    [Crossref] [PubMed]
  9. M. S. Thorniley, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, C. J. Green, “Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation,” Hepatology 21, 1602–1609 (1995).
    [Crossref] [PubMed]
  10. M. F. Stranc, M. S. Sowa, B. Abdulrauf, H. H. Mantsch, “Assessment of tissue viability using near-infrared spectroscopy,” Br. J. Plast. Surg. 51, 210–217 (1998).
    [Crossref] [PubMed]
  11. E. Barbiro, Y. Zurovsky, A. Mayevsky, “Real time monitoring of rat liver energy state during ischemia,” Microvasc. Res. 56, 253–260 (1998).
    [Crossref] [PubMed]
  12. J. M. C. C. Coremans, M. Aken, D. C. W. H. Naus, M. L. F. Velthuysen, H. A. Bruining, G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57, 671–683 (2000).
    [Crossref] [PubMed]
  13. A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3, 988–993 (2003).
    [Crossref] [PubMed]
  14. A. Mayevsky, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Real-time assessment of organ vitality during the transplantation procedure,” Transplant. Rev. 17, 96–116 (2003).
    [Crossref]
  15. M. S. Thorniley, N. J. Lane, S. Manek, C. J. Green, “Non-invasive measurement of respiratory chain dysfunction following hypothermic renal storage and transplantation,” Kidney Int. 45, 1489–1496 (1994).
    [Crossref] [PubMed]
  16. K. C. Calman, R. O. Quinn, P. R. Bell, “Metabolic aspects of organ storage and the prediction of viability,” in Organ Preservation, D. E. Pegg, ed. (Churchill Press, London, 1973), Chap. 21, pp. 225–240.
  17. P. A. Sehr, P. J. Bore, J. Papatheofanis, G. K. Radda, “Non-destructive measurement of metabolites and tissue PH in the kidney by 31P nuclear magnetic resonance,” Br. J. Exp. Pathol. 60, 632–641 (1979).
  18. B. J. Fuller, J. D. Gower, C. J. Green, “Free radical damage and organ preservation: fact or fiction?” Cryobiology 25, 377–393 (1988).
    [Crossref] [PubMed]
  19. L. Hardy, J. B. Clark, V. M. Darley-Usmar, D. R. Smith, D. Stone, “Reoxygenation-dependent decrease in mitochondrial NADH: CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart,” Biochem. J. 274, 133–137 (1991).
  20. W. Lohmann, J. Mussmann, C. Lohmann, W. Kunzel, “Native fluorescence of the cervix uteri as a marker for dysplasia and invasive carcinoma,” Eur. J. Obstet. Gynecol. Reprod. Biol. 31, 249–253 (1989).
    [Crossref] [PubMed]
  21. S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
    [Crossref]
  22. G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
    [Crossref] [PubMed]
  23. B. Chance, J. R. Williamson, “Respiratory enzymes in ox-idative phosphorylation. I. Kinetics of oxygen utilization,” J. Biol. Chem. 217, 383–393 (1955).
    [PubMed]
  24. B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764–4771 (1979).
    [PubMed]
  25. J. T. Fitzgerald, S. G. Demos, A. Michalopoulou, J. L. Pierce, C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122, 21–28 (2004).
    [Crossref] [PubMed]
  26. S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [Crossref] [PubMed]
  27. B. Chance, H. Baltscheffsky, “Respiratory enzymes in ox-idative phosphorylation,” J. Biol. Chem. 233, 736–739 (1958).
    [PubMed]
  28. R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
    [Crossref]
  29. R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
    [Crossref] [PubMed]
  30. L. Tao, D. Masri, S. Hrabetova, C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
    [Crossref] [PubMed]
  31. S. Ji, B. Chance, K. Nishiki, T. Smith, T. Rich, “Micro-light guides: a new method for measuring tissue fluorescence and reflectance,” Am. J. Physiol. 236, C144–C156 (1979).
    [PubMed]
  32. R. G. Thurman, J. J. Lemasters, “New micro-optical methods to study metabolism in periportal and pericentral regions of the liver lobule,” Drug Metab. Rev. 19, 263–281 (1988).
    [Crossref] [PubMed]
  33. Z. Gryczynski, I. Gryczynski, J. R. Lakowicz, “Fluorescence-sensing methods,” Methods Enzymol. 360, 44–75 (2003).
    [Crossref] [PubMed]
  34. H. J. Lin, P. Herman, J. R. Lakowicz, “Fluorescence lifetime-resolved pH imaging of living cells,” Cytometry 52A, 77–89 (2003).
    [Crossref]

2004 (1)

J. T. Fitzgerald, S. G. Demos, A. Michalopoulou, J. L. Pierce, C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122, 21–28 (2004).
[Crossref] [PubMed]

2003 (4)

Z. Gryczynski, I. Gryczynski, J. R. Lakowicz, “Fluorescence-sensing methods,” Methods Enzymol. 360, 44–75 (2003).
[Crossref] [PubMed]

H. J. Lin, P. Herman, J. R. Lakowicz, “Fluorescence lifetime-resolved pH imaging of living cells,” Cytometry 52A, 77–89 (2003).
[Crossref]

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3, 988–993 (2003).
[Crossref] [PubMed]

A. Mayevsky, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Real-time assessment of organ vitality during the transplantation procedure,” Transplant. Rev. 17, 96–116 (2003).
[Crossref]

2002 (1)

L. Tao, D. Masri, S. Hrabetova, C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[Crossref] [PubMed]

2000 (1)

J. M. C. C. Coremans, M. Aken, D. C. W. H. Naus, M. L. F. Velthuysen, H. A. Bruining, G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57, 671–683 (2000).
[Crossref] [PubMed]

1998 (3)

M. F. Stranc, M. S. Sowa, B. Abdulrauf, H. H. Mantsch, “Assessment of tissue viability using near-infrared spectroscopy,” Br. J. Plast. Surg. 51, 210–217 (1998).
[Crossref] [PubMed]

E. Barbiro, Y. Zurovsky, A. Mayevsky, “Real time monitoring of rat liver energy state during ischemia,” Microvasc. Res. 56, 253–260 (1998).
[Crossref] [PubMed]

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[Crossref] [PubMed]

1997 (1)

1995 (1)

M. S. Thorniley, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, C. J. Green, “Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation,” Hepatology 21, 1602–1609 (1995).
[Crossref] [PubMed]

1994 (1)

M. S. Thorniley, N. J. Lane, S. Manek, C. J. Green, “Non-invasive measurement of respiratory chain dysfunction following hypothermic renal storage and transplantation,” Kidney Int. 45, 1489–1496 (1994).
[Crossref] [PubMed]

1992 (1)

T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, “Changes in the redox distribution of rat liver by ischemia,” Anal. Biochem. 206, 131–136 (1992).
[Crossref] [PubMed]

1991 (1)

L. Hardy, J. B. Clark, V. M. Darley-Usmar, D. R. Smith, D. Stone, “Reoxygenation-dependent decrease in mitochondrial NADH: CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart,” Biochem. J. 274, 133–137 (1991).

1990 (1)

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[Crossref]

1989 (1)

W. Lohmann, J. Mussmann, C. Lohmann, W. Kunzel, “Native fluorescence of the cervix uteri as a marker for dysplasia and invasive carcinoma,” Eur. J. Obstet. Gynecol. Reprod. Biol. 31, 249–253 (1989).
[Crossref] [PubMed]

1988 (2)

B. J. Fuller, J. D. Gower, C. J. Green, “Free radical damage and organ preservation: fact or fiction?” Cryobiology 25, 377–393 (1988).
[Crossref] [PubMed]

R. G. Thurman, J. J. Lemasters, “New micro-optical methods to study metabolism in periportal and pericentral regions of the liver lobule,” Drug Metab. Rev. 19, 263–281 (1988).
[Crossref] [PubMed]

1987 (2)

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

A. P. Koretsky, L. A. Katz, R. S. Balaban, “Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard,” Am. J. Physiol. 253, H856–H862 (1987).
[PubMed]

1985 (1)

G. Renault, M. Sinet, M. Muffat-Joly, J. Cornillaut, J. J. Pocidalo, “In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia,” Lasers Surg. Med. 5, 111–122 (1985).
[Crossref] [PubMed]

1982 (1)

A. Mayevsky, B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–540 (1982).
[Crossref] [PubMed]

1980 (1)

R. S. Balaban, L. J. Mandel, “Coupling of aerobic metabolism to active ion transport in the kidney,” J. Physiol. 304, 331–348 (1980).

1979 (4)

P. A. Sehr, P. J. Bore, J. Papatheofanis, G. K. Radda, “Non-destructive measurement of metabolites and tissue PH in the kidney by 31P nuclear magnetic resonance,” Br. J. Exp. Pathol. 60, 632–641 (1979).

S. Ji, B. Chance, K. Nishiki, T. Smith, T. Rich, “Micro-light guides: a new method for measuring tissue fluorescence and reflectance,” Am. J. Physiol. 236, C144–C156 (1979).
[PubMed]

B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764–4771 (1979).
[PubMed]

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[Crossref] [PubMed]

1976 (1)

C. H. Barlow, B. Chance, “Ischemic areas in perfused rat hearts: measurement by NADH fluorescence photography,” Science 193, 909–910 (1976).
[Crossref] [PubMed]

1962 (1)

B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[Crossref] [PubMed]

1958 (1)

B. Chance, H. Baltscheffsky, “Respiratory enzymes in ox-idative phosphorylation,” J. Biol. Chem. 233, 736–739 (1958).
[PubMed]

1955 (1)

B. Chance, J. R. Williamson, “Respiratory enzymes in ox-idative phosphorylation. I. Kinetics of oxygen utilization,” J. Biol. Chem. 217, 383–393 (1955).
[PubMed]

Abdulrauf, B.

M. F. Stranc, M. S. Sowa, B. Abdulrauf, H. H. Mantsch, “Assessment of tissue viability using near-infrared spectroscopy,” Br. J. Plast. Surg. 51, 210–217 (1998).
[Crossref] [PubMed]

Aken, M.

J. M. C. C. Coremans, M. Aken, D. C. W. H. Naus, M. L. F. Velthuysen, H. A. Bruining, G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57, 671–683 (2000).
[Crossref] [PubMed]

Alfano, R. R.

Andersson-Engels, S.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[Crossref]

Balaban, R. S.

A. P. Koretsky, L. A. Katz, R. S. Balaban, “Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard,” Am. J. Physiol. 253, H856–H862 (1987).
[PubMed]

R. S. Balaban, L. J. Mandel, “Coupling of aerobic metabolism to active ion transport in the kidney,” J. Physiol. 304, 331–348 (1980).

Baltscheffsky, H.

B. Chance, H. Baltscheffsky, “Respiratory enzymes in ox-idative phosphorylation,” J. Biol. Chem. 233, 736–739 (1958).
[PubMed]

Barbiro, E.

E. Barbiro, Y. Zurovsky, A. Mayevsky, “Real time monitoring of rat liver energy state during ischemia,” Microvasc. Res. 56, 253–260 (1998).
[Crossref] [PubMed]

Barlow, C. H.

C. H. Barlow, B. Chance, “Ischemic areas in perfused rat hearts: measurement by NADH fluorescence photography,” Science 193, 909–910 (1976).
[Crossref] [PubMed]

Bell, P. R.

K. C. Calman, R. O. Quinn, P. R. Bell, “Metabolic aspects of organ storage and the prediction of viability,” in Organ Preservation, D. E. Pegg, ed. (Churchill Press, London, 1973), Chap. 21, pp. 225–240.

Benson, R. C.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[Crossref] [PubMed]

Bore, P. J.

P. A. Sehr, P. J. Bore, J. Papatheofanis, G. K. Radda, “Non-destructive measurement of metabolites and tissue PH in the kidney by 31P nuclear magnetic resonance,” Br. J. Exp. Pathol. 60, 632–641 (1979).

Bruining, H. A.

J. M. C. C. Coremans, M. Aken, D. C. W. H. Naus, M. L. F. Velthuysen, H. A. Bruining, G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57, 671–683 (2000).
[Crossref] [PubMed]

Calman, K. C.

K. C. Calman, R. O. Quinn, P. R. Bell, “Metabolic aspects of organ storage and the prediction of viability,” in Organ Preservation, D. E. Pegg, ed. (Churchill Press, London, 1973), Chap. 21, pp. 225–240.

Chance, B.

T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, “Changes in the redox distribution of rat liver by ischemia,” Anal. Biochem. 206, 131–136 (1992).
[Crossref] [PubMed]

A. Mayevsky, B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–540 (1982).
[Crossref] [PubMed]

S. Ji, B. Chance, K. Nishiki, T. Smith, T. Rich, “Micro-light guides: a new method for measuring tissue fluorescence and reflectance,” Am. J. Physiol. 236, C144–C156 (1979).
[PubMed]

B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764–4771 (1979).
[PubMed]

C. H. Barlow, B. Chance, “Ischemic areas in perfused rat hearts: measurement by NADH fluorescence photography,” Science 193, 909–910 (1976).
[Crossref] [PubMed]

B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[Crossref] [PubMed]

B. Chance, H. Baltscheffsky, “Respiratory enzymes in ox-idative phosphorylation,” J. Biol. Chem. 233, 736–739 (1958).
[PubMed]

B. Chance, J. R. Williamson, “Respiratory enzymes in ox-idative phosphorylation. I. Kinetics of oxygen utilization,” J. Biol. Chem. 217, 383–393 (1955).
[PubMed]

Clark, J. B.

L. Hardy, J. B. Clark, V. M. Darley-Usmar, D. R. Smith, D. Stone, “Reoxygenation-dependent decrease in mitochondrial NADH: CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart,” Biochem. J. 274, 133–137 (1991).

Cohen, P.

B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[Crossref] [PubMed]

Coremans, J. M. C. C.

J. M. C. C. Coremans, M. Aken, D. C. W. H. Naus, M. L. F. Velthuysen, H. A. Bruining, G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57, 671–683 (2000).
[Crossref] [PubMed]

Cornillaut, J.

G. Renault, M. Sinet, M. Muffat-Joly, J. Cornillaut, J. J. Pocidalo, “In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia,” Lasers Surg. Med. 5, 111–122 (1985).
[Crossref] [PubMed]

Cothren, R. M.

R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
[Crossref]

Darley-Usmar, V. M.

L. Hardy, J. B. Clark, V. M. Darley-Usmar, D. R. Smith, D. Stone, “Reoxygenation-dependent decrease in mitochondrial NADH: CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart,” Biochem. J. 274, 133–137 (1991).

Demos, S. G.

J. T. Fitzgerald, S. G. Demos, A. Michalopoulou, J. L. Pierce, C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122, 21–28 (2004).
[Crossref] [PubMed]

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[Crossref] [PubMed]

Feld, M. S.

R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
[Crossref]

Fitzgerald, J. T.

J. T. Fitzgerald, S. G. Demos, A. Michalopoulou, J. L. Pierce, C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122, 21–28 (2004).
[Crossref] [PubMed]

Fitzmaurice, M.

R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
[Crossref]

Fuller, B.

M. S. Thorniley, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, C. J. Green, “Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation,” Hepatology 21, 1602–1609 (1995).
[Crossref] [PubMed]

Fuller, B. J.

B. J. Fuller, J. D. Gower, C. J. Green, “Free radical damage and organ preservation: fact or fiction?” Cryobiology 25, 377–393 (1988).
[Crossref] [PubMed]

Gorbach, A.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3, 988–993 (2003).
[Crossref] [PubMed]

Gower, J. D.

B. J. Fuller, J. D. Gower, C. J. Green, “Free radical damage and organ preservation: fact or fiction?” Cryobiology 25, 377–393 (1988).
[Crossref] [PubMed]

Green, C. J.

M. S. Thorniley, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, C. J. Green, “Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation,” Hepatology 21, 1602–1609 (1995).
[Crossref] [PubMed]

M. S. Thorniley, N. J. Lane, S. Manek, C. J. Green, “Non-invasive measurement of respiratory chain dysfunction following hypothermic renal storage and transplantation,” Kidney Int. 45, 1489–1496 (1994).
[Crossref] [PubMed]

B. J. Fuller, J. D. Gower, C. J. Green, “Free radical damage and organ preservation: fact or fiction?” Cryobiology 25, 377–393 (1988).
[Crossref] [PubMed]

Gryczynski, I.

Z. Gryczynski, I. Gryczynski, J. R. Lakowicz, “Fluorescence-sensing methods,” Methods Enzymol. 360, 44–75 (2003).
[Crossref] [PubMed]

Gryczynski, Z.

Z. Gryczynski, I. Gryczynski, J. R. Lakowicz, “Fluorescence-sensing methods,” Methods Enzymol. 360, 44–75 (2003).
[Crossref] [PubMed]

Hale, D. A.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3, 988–993 (2003).
[Crossref] [PubMed]

A. Mayevsky, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Real-time assessment of organ vitality during the transplantation procedure,” Transplant. Rev. 17, 96–116 (2003).
[Crossref]

Hardy, L.

L. Hardy, J. B. Clark, V. M. Darley-Usmar, D. R. Smith, D. Stone, “Reoxygenation-dependent decrease in mitochondrial NADH: CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart,” Biochem. J. 274, 133–137 (1991).

Herman, P.

H. J. Lin, P. Herman, J. R. Lakowicz, “Fluorescence lifetime-resolved pH imaging of living cells,” Cytometry 52A, 77–89 (2003).
[Crossref]

Hrabetova, S.

L. Tao, D. Masri, S. Hrabetova, C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[Crossref] [PubMed]

Ikai, I.

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Itshak, F.

B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764–4771 (1979).
[PubMed]

Iwata, S.

T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, “Changes in the redox distribution of rat liver by ischemia,” Anal. Biochem. 206, 131–136 (1992).
[Crossref] [PubMed]

Jenabzadeh, M. Z.

M. S. Thorniley, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, C. J. Green, “Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation,” Hepatology 21, 1602–1609 (1995).
[Crossref] [PubMed]

Ji, S.

S. Ji, B. Chance, K. Nishiki, T. Smith, T. Rich, “Micro-light guides: a new method for measuring tissue fluorescence and reflectance,” Am. J. Physiol. 236, C144–C156 (1979).
[PubMed]

Jobsis, F.

B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[Crossref] [PubMed]

Johansson, J.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[Crossref]

Kamiyama, Y.

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Katz, L. A.

A. P. Koretsky, L. A. Katz, R. S. Balaban, “Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard,” Am. J. Physiol. 253, H856–H862 (1987).
[PubMed]

Kirk, A. D.

A. Mayevsky, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Real-time assessment of organ vitality during the transplantation procedure,” Transplant. Rev. 17, 96–116 (2003).
[Crossref]

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3, 988–993 (2003).
[Crossref] [PubMed]

Kitai, T.

T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, “Changes in the redox distribution of rat liver by ischemia,” Anal. Biochem. 206, 131–136 (1992).
[Crossref] [PubMed]

Koretsky, A. P.

A. P. Koretsky, L. A. Katz, R. S. Balaban, “Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard,” Am. J. Physiol. 253, H856–H862 (1987).
[PubMed]

Kunzel, W.

W. Lohmann, J. Mussmann, C. Lohmann, W. Kunzel, “Native fluorescence of the cervix uteri as a marker for dysplasia and invasive carcinoma,” Eur. J. Obstet. Gynecol. Reprod. Biol. 31, 249–253 (1989).
[Crossref] [PubMed]

Lakowicz, J. R.

H. J. Lin, P. Herman, J. R. Lakowicz, “Fluorescence lifetime-resolved pH imaging of living cells,” Cytometry 52A, 77–89 (2003).
[Crossref]

Z. Gryczynski, I. Gryczynski, J. R. Lakowicz, “Fluorescence-sensing methods,” Methods Enzymol. 360, 44–75 (2003).
[Crossref] [PubMed]

Lane, N. J.

M. S. Thorniley, N. J. Lane, S. Manek, C. J. Green, “Non-invasive measurement of respiratory chain dysfunction following hypothermic renal storage and transplantation,” Kidney Int. 45, 1489–1496 (1994).
[Crossref] [PubMed]

Lemasters, J. J.

R. G. Thurman, J. J. Lemasters, “New micro-optical methods to study metabolism in periportal and pericentral regions of the liver lobule,” Drug Metab. Rev. 19, 263–281 (1988).
[Crossref] [PubMed]

Levin, H.

R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
[Crossref]

Lin, H. J.

H. J. Lin, P. Herman, J. R. Lakowicz, “Fluorescence lifetime-resolved pH imaging of living cells,” Cytometry 52A, 77–89 (2003).
[Crossref]

Lohmann, C.

W. Lohmann, J. Mussmann, C. Lohmann, W. Kunzel, “Native fluorescence of the cervix uteri as a marker for dysplasia and invasive carcinoma,” Eur. J. Obstet. Gynecol. Reprod. Biol. 31, 249–253 (1989).
[Crossref] [PubMed]

Lohmann, W.

W. Lohmann, J. Mussmann, C. Lohmann, W. Kunzel, “Native fluorescence of the cervix uteri as a marker for dysplasia and invasive carcinoma,” Eur. J. Obstet. Gynecol. Reprod. Biol. 31, 249–253 (1989).
[Crossref] [PubMed]

Mandel, L. J.

R. S. Balaban, L. J. Mandel, “Coupling of aerobic metabolism to active ion transport in the kidney,” J. Physiol. 304, 331–348 (1980).

Manek, S.

M. S. Thorniley, N. J. Lane, S. Manek, C. J. Green, “Non-invasive measurement of respiratory chain dysfunction following hypothermic renal storage and transplantation,” Kidney Int. 45, 1489–1496 (1994).
[Crossref] [PubMed]

Mantsch, H. H.

M. F. Stranc, M. S. Sowa, B. Abdulrauf, H. H. Mantsch, “Assessment of tissue viability using near-infrared spectroscopy,” Br. J. Plast. Surg. 51, 210–217 (1998).
[Crossref] [PubMed]

Masri, D.

L. Tao, D. Masri, S. Hrabetova, C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[Crossref] [PubMed]

Mayevsky, A.

A. Mayevsky, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Real-time assessment of organ vitality during the transplantation procedure,” Transplant. Rev. 17, 96–116 (2003).
[Crossref]

E. Barbiro, Y. Zurovsky, A. Mayevsky, “Real time monitoring of rat liver energy state during ischemia,” Microvasc. Res. 56, 253–260 (1998).
[Crossref] [PubMed]

A. Mayevsky, B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–540 (1982).
[Crossref] [PubMed]

McKhann, G. M.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[Crossref] [PubMed]

Meyer, R. A.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[Crossref] [PubMed]

Michalopoulou, A.

J. T. Fitzgerald, S. G. Demos, A. Michalopoulou, J. L. Pierce, C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122, 21–28 (2004).
[Crossref] [PubMed]

Morimoto, T.

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Muffat-Joly, M.

G. Renault, M. Sinet, M. Muffat-Joly, J. Cornillaut, J. J. Pocidalo, “In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia,” Lasers Surg. Med. 5, 111–122 (1985).
[Crossref] [PubMed]

Mussmann, J.

W. Lohmann, J. Mussmann, C. Lohmann, W. Kunzel, “Native fluorescence of the cervix uteri as a marker for dysplasia and invasive carcinoma,” Eur. J. Obstet. Gynecol. Reprod. Biol. 31, 249–253 (1989).
[Crossref] [PubMed]

Nakase, Y.

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764–4771 (1979).
[PubMed]

Naus, D. C. W. H.

J. M. C. C. Coremans, M. Aken, D. C. W. H. Naus, M. L. F. Velthuysen, H. A. Bruining, G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57, 671–683 (2000).
[Crossref] [PubMed]

Nicholson, C.

L. Tao, D. Masri, S. Hrabetova, C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[Crossref] [PubMed]

Nishiki, K.

S. Ji, B. Chance, K. Nishiki, T. Smith, T. Rich, “Micro-light guides: a new method for measuring tissue fluorescence and reflectance,” Am. J. Physiol. 236, C144–C156 (1979).
[PubMed]

Oshino, R.

B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764–4771 (1979).
[PubMed]

Ozaki, N.

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Ozawa, K.

T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, “Changes in the redox distribution of rat liver by ischemia,” Anal. Biochem. 206, 131–136 (1992).
[Crossref] [PubMed]

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Papatheofanis, J.

P. A. Sehr, P. J. Bore, J. Papatheofanis, G. K. Radda, “Non-destructive measurement of metabolites and tissue PH in the kidney by 31P nuclear magnetic resonance,” Br. J. Exp. Pathol. 60, 632–641 (1979).

Petras, R.

R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
[Crossref]

Pierce, J. L.

J. T. Fitzgerald, S. G. Demos, A. Michalopoulou, J. L. Pierce, C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122, 21–28 (2004).
[Crossref] [PubMed]

Pocidalo, J. J.

G. Renault, M. Sinet, M. Muffat-Joly, J. Cornillaut, J. J. Pocidalo, “In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia,” Lasers Surg. Med. 5, 111–122 (1985).
[Crossref] [PubMed]

Puppels, G. J.

J. M. C. C. Coremans, M. Aken, D. C. W. H. Naus, M. L. F. Velthuysen, H. A. Bruining, G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57, 671–683 (2000).
[Crossref] [PubMed]

Quinn, R. O.

K. C. Calman, R. O. Quinn, P. R. Bell, “Metabolic aspects of organ storage and the prediction of viability,” in Organ Preservation, D. E. Pegg, ed. (Churchill Press, London, 1973), Chap. 21, pp. 225–240.

Radda, G. K.

P. A. Sehr, P. J. Bore, J. Papatheofanis, G. K. Radda, “Non-destructive measurement of metabolites and tissue PH in the kidney by 31P nuclear magnetic resonance,” Br. J. Exp. Pathol. 60, 632–641 (1979).

Rava, R. P.

R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
[Crossref]

Renault, G.

G. Renault, M. Sinet, M. Muffat-Joly, J. Cornillaut, J. J. Pocidalo, “In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia,” Lasers Surg. Med. 5, 111–122 (1985).
[Crossref] [PubMed]

Rich, T.

S. Ji, B. Chance, K. Nishiki, T. Smith, T. Rich, “Micro-light guides: a new method for measuring tissue fluorescence and reflectance,” Am. J. Physiol. 236, C144–C156 (1979).
[PubMed]

Richards-Kortum, R. R.

R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
[Crossref]

Schoener, B.

B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764–4771 (1979).
[PubMed]

B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[Crossref] [PubMed]

Sehr, P. A.

P. A. Sehr, P. J. Bore, J. Papatheofanis, G. K. Radda, “Non-destructive measurement of metabolites and tissue PH in the kidney by 31P nuclear magnetic resonance,” Br. J. Exp. Pathol. 60, 632–641 (1979).

Shimahara, Y.

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Simonton, D.

A. Mayevsky, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Real-time assessment of organ vitality during the transplantation procedure,” Transplant. Rev. 17, 96–116 (2003).
[Crossref]

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3, 988–993 (2003).
[Crossref] [PubMed]

Simpkin, S.

M. S. Thorniley, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, C. J. Green, “Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation,” Hepatology 21, 1602–1609 (1995).
[Crossref] [PubMed]

Sinet, M.

G. Renault, M. Sinet, M. Muffat-Joly, J. Cornillaut, J. J. Pocidalo, “In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia,” Lasers Surg. Med. 5, 111–122 (1985).
[Crossref] [PubMed]

Sivak, M. V.

R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
[Crossref]

Smith, D. R.

L. Hardy, J. B. Clark, V. M. Darley-Usmar, D. R. Smith, D. Stone, “Reoxygenation-dependent decrease in mitochondrial NADH: CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart,” Biochem. J. 274, 133–137 (1991).

Smith, T.

S. Ji, B. Chance, K. Nishiki, T. Smith, T. Rich, “Micro-light guides: a new method for measuring tissue fluorescence and reflectance,” Am. J. Physiol. 236, C144–C156 (1979).
[PubMed]

Sowa, M. S.

M. F. Stranc, M. S. Sowa, B. Abdulrauf, H. H. Mantsch, “Assessment of tissue viability using near-infrared spectroscopy,” Br. J. Plast. Surg. 51, 210–217 (1998).
[Crossref] [PubMed]

Star, W. M.

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[Crossref] [PubMed]

Stenram, U.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[Crossref]

Stone, D.

L. Hardy, J. B. Clark, V. M. Darley-Usmar, D. R. Smith, D. Stone, “Reoxygenation-dependent decrease in mitochondrial NADH: CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart,” Biochem. J. 274, 133–137 (1991).

Stranc, M. F.

M. F. Stranc, M. S. Sowa, B. Abdulrauf, H. H. Mantsch, “Assessment of tissue viability using near-infrared spectroscopy,” Br. J. Plast. Surg. 51, 210–217 (1998).
[Crossref] [PubMed]

Svanberg, K.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[Crossref]

Svanberg, S.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[Crossref]

Swanson, S. J.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3, 988–993 (2003).
[Crossref] [PubMed]

A. Mayevsky, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Real-time assessment of organ vitality during the transplantation procedure,” Transplant. Rev. 17, 96–116 (2003).
[Crossref]

Tanaka, A.

T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, “Changes in the redox distribution of rat liver by ischemia,” Anal. Biochem. 206, 131–136 (1992).
[Crossref] [PubMed]

Tao, L.

L. Tao, D. Masri, S. Hrabetova, C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[Crossref] [PubMed]

Thorniley, M. S.

M. S. Thorniley, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, C. J. Green, “Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation,” Hepatology 21, 1602–1609 (1995).
[Crossref] [PubMed]

M. S. Thorniley, N. J. Lane, S. Manek, C. J. Green, “Non-invasive measurement of respiratory chain dysfunction following hypothermic renal storage and transplantation,” Kidney Int. 45, 1489–1496 (1994).
[Crossref] [PubMed]

Thurman, R. G.

R. G. Thurman, J. J. Lemasters, “New micro-optical methods to study metabolism in periportal and pericentral regions of the liver lobule,” Drug Metab. Rev. 19, 263–281 (1988).
[Crossref] [PubMed]

Tokuka, A.

T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, “Changes in the redox distribution of rat liver by ischemia,” Anal. Biochem. 206, 131–136 (1992).
[Crossref] [PubMed]

Tokunaga, Y.

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Troppmann, C.

J. T. Fitzgerald, S. G. Demos, A. Michalopoulou, J. L. Pierce, C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122, 21–28 (2004).
[Crossref] [PubMed]

Velthuysen, M. L. F.

J. M. C. C. Coremans, M. Aken, D. C. W. H. Naus, M. L. F. Velthuysen, H. A. Bruining, G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57, 671–683 (2000).
[Crossref] [PubMed]

Wagnieres, G. A.

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[Crossref] [PubMed]

Wakashiro, S.

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Williamson, J. R.

B. Chance, J. R. Williamson, “Respiratory enzymes in ox-idative phosphorylation. I. Kinetics of oxygen utilization,” J. Biol. Chem. 217, 383–393 (1955).
[PubMed]

Wilson, B. C.

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[Crossref] [PubMed]

Yamaoka, Y.

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Zaruba, M. E.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[Crossref] [PubMed]

Zurovsky, Y.

E. Barbiro, Y. Zurovsky, A. Mayevsky, “Real time monitoring of rat liver energy state during ischemia,” Microvasc. Res. 56, 253–260 (1998).
[Crossref] [PubMed]

Am. J. Physiol. (2)

A. P. Koretsky, L. A. Katz, R. S. Balaban, “Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard,” Am. J. Physiol. 253, H856–H862 (1987).
[PubMed]

S. Ji, B. Chance, K. Nishiki, T. Smith, T. Rich, “Micro-light guides: a new method for measuring tissue fluorescence and reflectance,” Am. J. Physiol. 236, C144–C156 (1979).
[PubMed]

Am. J. Transplant. (1)

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3, 988–993 (2003).
[Crossref] [PubMed]

Anal. Biochem. (1)

T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, “Changes in the redox distribution of rat liver by ischemia,” Anal. Biochem. 206, 131–136 (1992).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochem. J. (1)

L. Hardy, J. B. Clark, V. M. Darley-Usmar, D. R. Smith, D. Stone, “Reoxygenation-dependent decrease in mitochondrial NADH: CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart,” Biochem. J. 274, 133–137 (1991).

Br. J. Exp. Pathol. (1)

P. A. Sehr, P. J. Bore, J. Papatheofanis, G. K. Radda, “Non-destructive measurement of metabolites and tissue PH in the kidney by 31P nuclear magnetic resonance,” Br. J. Exp. Pathol. 60, 632–641 (1979).

Br. J. Plast. Surg. (1)

M. F. Stranc, M. S. Sowa, B. Abdulrauf, H. H. Mantsch, “Assessment of tissue viability using near-infrared spectroscopy,” Br. J. Plast. Surg. 51, 210–217 (1998).
[Crossref] [PubMed]

Brain Res. (1)

L. Tao, D. Masri, S. Hrabetova, C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[Crossref] [PubMed]

Cryobiology (1)

B. J. Fuller, J. D. Gower, C. J. Green, “Free radical damage and organ preservation: fact or fiction?” Cryobiology 25, 377–393 (1988).
[Crossref] [PubMed]

Cytometry (1)

H. J. Lin, P. Herman, J. R. Lakowicz, “Fluorescence lifetime-resolved pH imaging of living cells,” Cytometry 52A, 77–89 (2003).
[Crossref]

Drug Metab. Rev. (1)

R. G. Thurman, J. J. Lemasters, “New micro-optical methods to study metabolism in periportal and pericentral regions of the liver lobule,” Drug Metab. Rev. 19, 263–281 (1988).
[Crossref] [PubMed]

Eur. J. Obstet. Gynecol. Reprod. Biol. (1)

W. Lohmann, J. Mussmann, C. Lohmann, W. Kunzel, “Native fluorescence of the cervix uteri as a marker for dysplasia and invasive carcinoma,” Eur. J. Obstet. Gynecol. Reprod. Biol. 31, 249–253 (1989).
[Crossref] [PubMed]

Hepatology (1)

M. S. Thorniley, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, C. J. Green, “Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation,” Hepatology 21, 1602–1609 (1995).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[Crossref]

J. Biol. Chem. (3)

B. Chance, H. Baltscheffsky, “Respiratory enzymes in ox-idative phosphorylation,” J. Biol. Chem. 233, 736–739 (1958).
[PubMed]

B. Chance, J. R. Williamson, “Respiratory enzymes in ox-idative phosphorylation. I. Kinetics of oxygen utilization,” J. Biol. Chem. 217, 383–393 (1955).
[PubMed]

B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764–4771 (1979).
[PubMed]

J. Histochem. Cytochem. (1)

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[Crossref] [PubMed]

J. Physiol. (1)

R. S. Balaban, L. J. Mandel, “Coupling of aerobic metabolism to active ion transport in the kidney,” J. Physiol. 304, 331–348 (1980).

J. Surg. Res. (1)

J. T. Fitzgerald, S. G. Demos, A. Michalopoulou, J. L. Pierce, C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122, 21–28 (2004).
[Crossref] [PubMed]

Kidney Int. (2)

J. M. C. C. Coremans, M. Aken, D. C. W. H. Naus, M. L. F. Velthuysen, H. A. Bruining, G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57, 671–683 (2000).
[Crossref] [PubMed]

M. S. Thorniley, N. J. Lane, S. Manek, C. J. Green, “Non-invasive measurement of respiratory chain dysfunction following hypothermic renal storage and transplantation,” Kidney Int. 45, 1489–1496 (1994).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

G. Renault, M. Sinet, M. Muffat-Joly, J. Cornillaut, J. J. Pocidalo, “In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia,” Lasers Surg. Med. 5, 111–122 (1985).
[Crossref] [PubMed]

Methods Enzymol. (1)

Z. Gryczynski, I. Gryczynski, J. R. Lakowicz, “Fluorescence-sensing methods,” Methods Enzymol. 360, 44–75 (2003).
[Crossref] [PubMed]

Microvasc. Res. (1)

E. Barbiro, Y. Zurovsky, A. Mayevsky, “Real time monitoring of rat liver energy state during ischemia,” Microvasc. Res. 56, 253–260 (1998).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[Crossref] [PubMed]

Science (3)

A. Mayevsky, B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–540 (1982).
[Crossref] [PubMed]

B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[Crossref] [PubMed]

C. H. Barlow, B. Chance, “Ischemic areas in perfused rat hearts: measurement by NADH fluorescence photography,” Science 193, 909–910 (1976).
[Crossref] [PubMed]

Transplant. Rev. (1)

A. Mayevsky, D. Simonton, D. A. Hale, S. J. Swanson, A. D. Kirk, “Real-time assessment of organ vitality during the transplantation procedure,” Transplant. Rev. 17, 96–116 (2003).
[Crossref]

Transplantation (1)

Y. Tokunaga, N. Ozaki, S. Wakashiro, I. Ikai, T. Morimoto, Y. Shimahara, Y. Kamiyama, Y. Yamaoka, K. Ozawa, Y. Nakase, “Fluorometric study for the noninvasive determination of cellular viability in perfused rat liver,” Transplantation 44, 701–706 (1987).
[Crossref] [PubMed]

Other (2)

K. C. Calman, R. O. Quinn, P. R. Bell, “Metabolic aspects of organ storage and the prediction of viability,” in Organ Preservation, D. E. Pegg, ed. (Churchill Press, London, 1973), Chap. 21, pp. 225–240.

R. P. Rava, R. R. Richards-Kortum, M. Fitzmaurice, R. M. Cothren, R. Petras, M. V. Sivak, H. Levin, M. S. Feld, “Early detection of dysplasia in colon and bladder tissue using laser induced fluorescence,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanics and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 68–78 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup used to record autofluorescence and cross-polarized elastic light-scattering images. A tunable OPO laser and a WLS were used for the illumination of the tissue. OPO, optical parametric oscillator; WLS, white-light source; P, polarizer; F, filter; L, lens.

Fig. 2
Fig. 2

Autofluorescence images at 450 ± 20 nm under 335-nm excitation wavelength. In each image, both kidneys were from the same rat, with the left kidney uninjured and the right injured (a) for 5 min and (b) for 120 min.

Fig. 3
Fig. 3

Average intensity ratio (injured/normal) as a function of excitation wavelength obtained from autofluorescence images with the 395-nm LP filter. The mean intensity ratio value was obtained from four pairs of injured and normal kidneys, with the injured kidney having been clamped for 30 min.

Fig. 4
Fig. 4

Average intensity ratio (injured/normal) as a function of injury time with the autofluorescence images under 335-nm excitation at the following spectral windows: (a) 450 ± 20 nm, (b) 395 − 1000 nm, (c) 500 ± 20 nm, (d) 600 ± 20 nm, (e) 725 − 1000 nm. Best exponential fit of the experimental data with single exponential is shown with dashed curve.

Fig. 5
Fig. 5

Mean fluorescence spectra under 335-nm excitation of injured (dashed curve) and uninjured (solid curve) kidneys from the same animal (a) for 5 min of injury and (b) for 90 min of injury. Each emission spectrum curve was normalized to the peak intensity value.

Fig. 6
Fig. 6

Cross-polarized elastic light-scattering images of hypo-thermically preserved kidneys at 800 ± 10 nm. In each image, both kidneys were from the same rat, with the left kidney uninjured and the right injured (a) for 5 min and (b) for 120 min. Enhanced scattering is from the ice.

Fig. 7
Fig. 7

Average intensity ratio (injured/normal) as a function of injury time from the cross-polarized elastic light-scattering images (a) at 800 ± 10 nm and (b) at 700 ± 10 nm. Dashed curve is best fit of experimental data with single exponential.

Tables (1)

Tables Icon

Table 1 Fitting Parameters for Single Exponential of Experimental Data with the Different Imaging Methods

Metrics