Abstract

Optical coherence tomography (OCT) has important potential advantages for fast functional neuroimaging. However, dynamic neuroimaging poses demanding requirements for fast and stable acquisition of optical scans. Optical phase modulators based on the electro-optic effect allow rapid phase modulation; however, applications to low-coherence tomography are limited by the optical dispersion of a broadband light source by the electro-optic crystal. We show that the optical dispersion can be theoretically estimated and experimentally compensated. With an electro-optic phase modulator–based, no-moving-parts OCT system, near-infrared scattering changes associated with neural activation were recorded from isolated frog retinas activated by visible light.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activation in vivo,” J. Neurosci Methods. 91, 135–145 (1999).
    [CrossRef] [PubMed]
  2. D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
    [CrossRef] [PubMed]
  3. M. P. Kristensen, D. M. Rector, G. R. Poe, R. M. Harper, “Activation changes of the cat paraventricular hypothalamus during stressor exposure,” NeuroReport 15, 43–48 (2004).
    [CrossRef] [PubMed]
  4. K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
    [CrossRef] [PubMed]
  5. R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
  6. J. M. Huntley, G. H. Kaufmann, D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556–6563 (1999).
    [CrossRef]
  7. T. Hellmuth, M. Welle, “Simultaneous measurement of dispersion, spectrum and distance with a Fourier transform spectrometer,” J. Biomed. Opt. 3, 7–11 (1998).
    [CrossRef] [PubMed]
  8. C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179–185 (1998).
    [CrossRef]
  9. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultra-high resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  10. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, New York, 2000).
  11. X. C. Yao, D. Rector, J. S. George, “Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes,” Appl. Opt. 42, 2972–2978 (2003).
    [CrossRef] [PubMed]
  12. L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
    [CrossRef] [PubMed]
  13. I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43 (Suppl. 1), 67–75 (1993).
  14. H. H. Harary, J. E. Brown, L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202, 1083–1085 (1978).
    [CrossRef] [PubMed]
  15. S. M. Dawis, M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Visual. Neurosci. 10, 687–692 (1993).
    [CrossRef]
  16. D. R. Pepperberg, M. Kahlert, A. Krause, K. P. Hofmann, “Phtonic modulation of a highly sensitive near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. USA 85, 5531–5535 (1988).
    [CrossRef]
  17. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218–1220 (2003).
    [CrossRef] [PubMed]
  18. H. Kuhn. “Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes,” Nature 283, 587–589 (1980).
    [CrossRef] [PubMed]
  19. V. Y. Arshavsky, T. D. Lamb, E. N. Pugh, “G proteins and phototransduction,” Annu. Rev. Physiol. 64, 153–187 (2000).
    [CrossRef]

2004 (2)

M. P. Kristensen, D. M. Rector, G. R. Poe, R. M. Harper, “Activation changes of the cat paraventricular hypothalamus during stressor exposure,” NeuroReport 15, 43–48 (2004).
[CrossRef] [PubMed]

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

2003 (2)

2001 (1)

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

2000 (1)

V. Y. Arshavsky, T. D. Lamb, E. N. Pugh, “G proteins and phototransduction,” Annu. Rev. Physiol. 64, 153–187 (2000).
[CrossRef]

1999 (3)

1998 (2)

T. Hellmuth, M. Welle, “Simultaneous measurement of dispersion, spectrum and distance with a Fourier transform spectrometer,” J. Biomed. Opt. 3, 7–11 (1998).
[CrossRef] [PubMed]

C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179–185 (1998).
[CrossRef]

1993 (2)

I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43 (Suppl. 1), 67–75 (1993).

S. M. Dawis, M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Visual. Neurosci. 10, 687–692 (1993).
[CrossRef]

1991 (1)

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).

1988 (1)

D. R. Pepperberg, M. Kahlert, A. Krause, K. P. Hofmann, “Phtonic modulation of a highly sensitive near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. USA 85, 5531–5535 (1988).
[CrossRef]

1980 (1)

H. Kuhn. “Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes,” Nature 283, 587–589 (1980).
[CrossRef] [PubMed]

1978 (1)

H. H. Harary, J. E. Brown, L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202, 1083–1085 (1978).
[CrossRef] [PubMed]

1968 (1)

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Arshavsky, V. Y.

V. Y. Arshavsky, T. D. Lamb, E. N. Pugh, “G proteins and phototransduction,” Annu. Rev. Physiol. 64, 153–187 (2000).
[CrossRef]

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179–185 (1998).
[CrossRef]

Blonder, G. E.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).

Boppart, S. A.

Brown, J. E.

H. H. Harary, J. E. Brown, L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202, 1083–1085 (1978).
[CrossRef] [PubMed]

Byrne, P. M.

I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43 (Suppl. 1), 67–75 (1993).

Carter, K. M.

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

Cohen, L. B.

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Dawis, S. M.

S. M. Dawis, M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Visual. Neurosci. 10, 687–692 (1993).
[CrossRef]

Drexler, W.

Fercher, A. F.

C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179–185 (1998).
[CrossRef]

Fujimoto, J. G.

George, J. S.

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

X. C. Yao, D. Rector, J. S. George, “Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes,” Appl. Opt. 42, 2972–2978 (2003).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activation in vivo,” J. Neurosci Methods. 91, 135–145 (1999).
[CrossRef] [PubMed]

Gillette, R.

Harary, H. H.

H. H. Harary, J. E. Brown, L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202, 1083–1085 (1978).
[CrossRef] [PubMed]

Harper, R. M.

M. P. Kristensen, D. M. Rector, G. R. Poe, R. M. Harper, “Activation changes of the cat paraventricular hypothalamus during stressor exposure,” NeuroReport 15, 43–48 (2004).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

Hellmuth, T.

T. Hellmuth, M. Welle, “Simultaneous measurement of dispersion, spectrum and distance with a Fourier transform spectrometer,” J. Biomed. Opt. 3, 7–11 (1998).
[CrossRef] [PubMed]

Hille, B.

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Hitzenberger, C. K.

C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179–185 (1998).
[CrossRef]

Hofmann, K. P.

D. R. Pepperberg, M. Kahlert, A. Krause, K. P. Hofmann, “Phtonic modulation of a highly sensitive near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. USA 85, 5531–5535 (1988).
[CrossRef]

Huntley, J. M.

Ippen, E. P.

Kahlert, M.

D. R. Pepperberg, M. Kahlert, A. Krause, K. P. Hofmann, “Phtonic modulation of a highly sensitive near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. USA 85, 5531–5535 (1988).
[CrossRef]

Kärtner, F. X.

Kaufmann, G. H.

Kerr, D.

Keynes, R. D.

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Kleinfeld, D.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).

Krause, A.

D. R. Pepperberg, M. Kahlert, A. Krause, K. P. Hofmann, “Phtonic modulation of a highly sensitive near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. USA 85, 5531–5535 (1988).
[CrossRef]

Kristensen, M. P.

M. P. Kristensen, D. M. Rector, G. R. Poe, R. M. Harper, “Activation changes of the cat paraventricular hypothalamus during stressor exposure,” NeuroReport 15, 43–48 (2004).
[CrossRef] [PubMed]

Kuhn, H.

H. Kuhn. “Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes,” Nature 283, 587–589 (1980).
[CrossRef] [PubMed]

Lamb, T. D.

V. Y. Arshavsky, T. D. Lamb, E. N. Pugh, “G proteins and phototransduction,” Annu. Rev. Physiol. 64, 153–187 (2000).
[CrossRef]

LaPorta, A.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).

Lazebnik, M.

Li, X. D.

Marks, D. L.

Morgner, U.

Pepperberg, D. R.

D. R. Pepperberg, M. Kahlert, A. Krause, K. P. Hofmann, “Phtonic modulation of a highly sensitive near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. USA 85, 5531–5535 (1988).
[CrossRef]

Pinto, L. H.

H. H. Harary, J. E. Brown, L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202, 1083–1085 (1978).
[CrossRef] [PubMed]

Pitris, C.

Poe, G. R.

M. P. Kristensen, D. M. Rector, G. R. Poe, R. M. Harper, “Activation changes of the cat paraventricular hypothalamus during stressor exposure,” NeuroReport 15, 43–48 (2004).
[CrossRef] [PubMed]

Potgieter, K.

Pugh, E. N.

V. Y. Arshavsky, T. D. Lamb, E. N. Pugh, “G proteins and phototransduction,” Annu. Rev. Physiol. 64, 153–187 (2000).
[CrossRef]

Raccuia-Behling, F.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).

Rector, D.

Rector, D. M.

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

M. P. Kristensen, D. M. Rector, G. R. Poe, R. M. Harper, “Activation changes of the cat paraventricular hypothalamus during stressor exposure,” NeuroReport 15, 43–48 (2004).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activation in vivo,” J. Neurosci Methods. 91, 135–145 (1999).
[CrossRef] [PubMed]

Rogers, R. F.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activation in vivo,” J. Neurosci Methods. 91, 135–145 (1999).
[CrossRef] [PubMed]

Rossetto, M.

S. M. Dawis, M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Visual. Neurosci. 10, 687–692 (1993).
[CrossRef]

Schwaber, J. S.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

Slusher, R. E.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, New York, 2000).

Stepnoski, R. A.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).

Tasaki, I.

I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43 (Suppl. 1), 67–75 (1993).

Welle, M.

T. Hellmuth, M. Welle, “Simultaneous measurement of dispersion, spectrum and distance with a Fourier transform spectrometer,” J. Biomed. Opt. 3, 7–11 (1998).
[CrossRef] [PubMed]

Yao, X. C.

Annu. Rev. Physiol. (1)

V. Y. Arshavsky, T. D. Lamb, E. N. Pugh, “G proteins and phototransduction,” Annu. Rev. Physiol. 64, 153–187 (2000).
[CrossRef]

Appl. Opt. (2)

J. Biomed. Opt. (1)

T. Hellmuth, M. Welle, “Simultaneous measurement of dispersion, spectrum and distance with a Fourier transform spectrometer,” J. Biomed. Opt. 3, 7–11 (1998).
[CrossRef] [PubMed]

J. Neurosci Methods. (1)

D. M. Rector, R. F. Rogers, J. S. George, “A focusing image probe for assessing neural activation in vivo,” J. Neurosci Methods. 91, 135–145 (1999).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

Jpn. J. Physiol. (1)

I. Tasaki, P. M. Byrne, “The origin of rapid change in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers,” Jpn. J. Physiol. 43 (Suppl. 1), 67–75 (1993).

Nature (2)

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

H. Kuhn. “Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes,” Nature 283, 587–589 (1980).
[CrossRef] [PubMed]

Neuroimage (1)

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14, 977–994 (2001).
[CrossRef] [PubMed]

NeuroReport (1)

M. P. Kristensen, D. M. Rector, G. R. Poe, R. M. Harper, “Activation changes of the cat paraventricular hypothalamus during stressor exposure,” NeuroReport 15, 43–48 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179–185 (1998).
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (2)

D. R. Pepperberg, M. Kahlert, A. Krause, K. P. Hofmann, “Phtonic modulation of a highly sensitive near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. USA 85, 5531–5535 (1988).
[CrossRef]

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).

Science (1)

H. H. Harary, J. E. Brown, L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202, 1083–1085 (1978).
[CrossRef] [PubMed]

Visual. Neurosci. (1)

S. M. Dawis, M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Visual. Neurosci. 10, 687–692 (1993).
[CrossRef]

Other (1)

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the OCT. SLD with a 793-nm center wavelength and a 15-nm FWHM spectral width. BK7 glass block was used for compensating chromatic aberration of the EOPM. A 10×/NA 0.25 objective was used to illuminate the sample with a light power ∼150 μW and to collect the backward scattering light.

Fig. 2
Fig. 2

(a) Optical modulation depth of modulated OCT signal was 0.25 with optical dispersion; (b) 63-μm FWHM OCT signal was recorded with optical dispersion; (c) the optical modulation depth of modulated OCT signal was 0.95 with dispersion compensation; (d) 19-μm FWHM OCT signal was recorded with dispersion compensation.

Fig. 3
Fig. 3

(a) Curves of index of refraction of ADP crystal and BK7 glass; (b) residual optical dispersion of the OCT system when a 107-mm BK7 was placed in the sample arm.

Fig. 4
Fig. 4

Frog retina was immersed in Ringers and pressed to a multielectrode array with moderate pressure. The photoreceptor layer was upward, closest to the light source. The ganglion layer was in contact with the multielectrode array (not to scale.)

Fig. 5
Fig. 5

(a) Voltage pulse of 10 ms was used to drive a white LED, and the light flash stimulated the frog retina. (b) Electrophysiological response associated with the light stimulus. (c) Scattering response at the photoreceptor layer. (d) Scattering response at the ganglion layer. Each trace is an average of 100 trials, and the recording interval was 1.5 s.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

l c = 2 ln 2 π λ ¯ 2 Δ λ ,
d = d c + ( λ λ c ) D ,
l = [ l c 2 + ( D g L g Δ λ ) 2 ] 1 / 2 ,

Metrics