Abstract

Single trial, birefringence signals associated with action potentials from isolated lobster nerves were optimized with high-intensity light-emitting diodes (LEDs) and glass polarizers. The narrow spectral output of the LEDs allowed us to select specific wavelengths, increasing the effectiveness of the polarizers and minimizing the stray light in the system. The LEDs produced intensity profiles equivalent to narrowband filtered 100-W halogen light, and birefringence signals were comparable or superior in size and clarity to halogen lamp recordings. The results support a direct correlation between signal size and polarizer extinction coefficient. Increasing the sensitivity of birefringence detection through the use of LED light sources could ameliorate noninvasive brain imaging techniques that employ fast optical consequences associated with action potential propagation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hochman, “Intrinsic optical changes in neuronal tissue,” Neurosurg. Clin. N. Am. 8, 393–412 (1997).
    [PubMed]
  2. J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
    [CrossRef] [PubMed]
  3. G. Gratton, M. Fabiani, P. M. Corballis, E. Gratton, “Non-invasive detection of fast siganls from the cortex using frequency-domain optical methods,” Ann. N. Y. Acad. Sci. 820, 286–298 (1997).
    [CrossRef]
  4. L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
    [CrossRef] [PubMed]
  5. K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
    [CrossRef] [PubMed]
  6. D. Landowne, “Measuring nerve excitation with polarized light,” Jpn. J. Physiol. 43, S7–S11 (1993).
    [PubMed]
  7. D. Landowne, “Molecular motion underlying activation and inactivation of sodium channels in squid giant axons,” J. Membrane Biol. 88, 173–185 (1985).
    [CrossRef]
  8. R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J.7, 645–654.
  9. R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. 88, 9382–9386 (1991).
  10. H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
    [CrossRef] [PubMed]
  11. K. Furusawa, “The depolarization of crustacean nerve by stimulation or oxygen want,” J. Physiol. A 67, 325–342 (1929).
  12. H. D. Young, R. A. Freedman, University Physics (Addison-Wesley, Reading, Mass., 1996).
  13. I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. 61, 883–888 (1968).

2004 (1)

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

2000 (1)

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

1997 (2)

G. Gratton, M. Fabiani, P. M. Corballis, E. Gratton, “Non-invasive detection of fast siganls from the cortex using frequency-domain optical methods,” Ann. N. Y. Acad. Sci. 820, 286–298 (1997).
[CrossRef]

D. W. Hochman, “Intrinsic optical changes in neuronal tissue,” Neurosurg. Clin. N. Am. 8, 393–412 (1997).
[PubMed]

1993 (1)

D. Landowne, “Measuring nerve excitation with polarized light,” Jpn. J. Physiol. 43, S7–S11 (1993).
[PubMed]

1991 (1)

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. 88, 9382–9386 (1991).

1987 (1)

H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
[CrossRef] [PubMed]

1985 (1)

D. Landowne, “Molecular motion underlying activation and inactivation of sodium channels in squid giant axons,” J. Membrane Biol. 88, 173–185 (1985).
[CrossRef]

1968 (2)

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. 61, 883–888 (1968).

1929 (1)

K. Furusawa, “The depolarization of crustacean nerve by stimulation or oxygen want,” J. Physiol. A 67, 325–342 (1929).

Blazek, V.

H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
[CrossRef] [PubMed]

Blonder, G. E.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. 88, 9382–9386 (1991).

Carnay, L.

I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. 61, 883–888 (1968).

Carter, K. M.

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

Cohen, L. B.

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Corballis, P. M.

G. Gratton, M. Fabiani, P. M. Corballis, E. Gratton, “Non-invasive detection of fast siganls from the cortex using frequency-domain optical methods,” Ann. N. Y. Acad. Sci. 820, 286–298 (1997).
[CrossRef]

Curio, G.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Eggert, H. R.

H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
[CrossRef] [PubMed]

Fabiani, M.

G. Gratton, M. Fabiani, P. M. Corballis, E. Gratton, “Non-invasive detection of fast siganls from the cortex using frequency-domain optical methods,” Ann. N. Y. Acad. Sci. 820, 286–298 (1997).
[CrossRef]

Freedman, R. A.

H. D. Young, R. A. Freedman, University Physics (Addison-Wesley, Reading, Mass., 1996).

Furusawa, K.

K. Furusawa, “The depolarization of crustacean nerve by stimulation or oxygen want,” J. Physiol. A 67, 325–342 (1929).

George, J. S.

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

Gratton, E.

G. Gratton, M. Fabiani, P. M. Corballis, E. Gratton, “Non-invasive detection of fast siganls from the cortex using frequency-domain optical methods,” Ann. N. Y. Acad. Sci. 820, 286–298 (1997).
[CrossRef]

Gratton, G.

G. Gratton, M. Fabiani, P. M. Corballis, E. Gratton, “Non-invasive detection of fast siganls from the cortex using frequency-domain optical methods,” Ann. N. Y. Acad. Sci. 820, 286–298 (1997).
[CrossRef]

Hille, B.

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Hochman, D. W.

D. W. Hochman, “Intrinsic optical changes in neuronal tissue,” Neurosurg. Clin. N. Am. 8, 393–412 (1997).
[PubMed]

Keynes, R. D.

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Kleinfeld, D.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. 88, 9382–9386 (1991).

Kohl, M.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Landowne, D.

D. Landowne, “Measuring nerve excitation with polarized light,” Jpn. J. Physiol. 43, S7–S11 (1993).
[PubMed]

D. Landowne, “Molecular motion underlying activation and inactivation of sodium channels in squid giant axons,” J. Membrane Biol. 88, 173–185 (1985).
[CrossRef]

LaPorta, A.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. 88, 9382–9386 (1991).

Obrig, H.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Oldenbourg, R.

R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J.7, 645–654.

Raccuia-Behling, F.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. 88, 9382–9386 (1991).

Rector, D. M.

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

Rinneberg, H.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Salmon, E. D.

R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J.7, 645–654.

Sandlin, R.

I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. 61, 883–888 (1968).

Slusher, R. E.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. 88, 9382–9386 (1991).

Steinbrink, J.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Stepnoski, R. A.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. 88, 9382–9386 (1991).

Syre, F.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Tasaki, I.

I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. 61, 883–888 (1968).

Thomas, F.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Tran, P. T.

R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J.7, 645–654.

Villringer, A.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Wabnitz, H.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Watanabe, A.

I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. 61, 883–888 (1968).

Young, H. D.

H. D. Young, R. A. Freedman, University Physics (Addison-Wesley, Reading, Mass., 1996).

Ann. N. Y. Acad. Sci. (1)

G. Gratton, M. Fabiani, P. M. Corballis, E. Gratton, “Non-invasive detection of fast siganls from the cortex using frequency-domain optical methods,” Ann. N. Y. Acad. Sci. 820, 286–298 (1997).
[CrossRef]

J. Membrane Biol. (1)

D. Landowne, “Molecular motion underlying activation and inactivation of sodium channels in squid giant axons,” J. Membrane Biol. 88, 173–185 (1985).
[CrossRef]

J. Neurosci. Methods (1)

K. M. Carter, J. S. George, D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9–16 (2004).
[CrossRef] [PubMed]

J. Physiol. A (1)

K. Furusawa, “The depolarization of crustacean nerve by stimulation or oxygen want,” J. Physiol. A 67, 325–342 (1929).

Jpn. J. Physiol. (1)

D. Landowne, “Measuring nerve excitation with polarized light,” Jpn. J. Physiol. 43, S7–S11 (1993).
[PubMed]

Nature (1)

L. B. Cohen, R. D. Keynes, B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438–441 (1968).
[CrossRef] [PubMed]

Neurosci. Lett. (1)

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
[CrossRef] [PubMed]

Neurosurg. Clin. N. Am. (1)

D. W. Hochman, “Intrinsic optical changes in neuronal tissue,” Neurosurg. Clin. N. Am. 8, 393–412 (1997).
[PubMed]

Neurosurgery (1)

H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (2)

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. 88, 9382–9386 (1991).

I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. 61, 883–888 (1968).

Other (2)

H. D. Young, R. A. Freedman, University Physics (Addison-Wesley, Reading, Mass., 1996).

R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J.7, 645–654.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. LED light (a) passed through a polarizer (d) [after optional collimation through a f = 27 mm condenser lens (b) and aperture (c) when the IR LED was used], and was projected through a window (j) onto the nerve bundle within the chamber (e) with the long axis of the nerve oriented at 45° with respect to the E-vector. The transmitted, birefringent light passed through a second polarizer (f) with axis of polarization orthogonal to that of the first polarizer and was detected by a photodiode (g). Silver electrodes (h) located in each small well (i) in the chamber were used to stimulate and record from the nerve.

Fig. 2
Fig. 2

Emittance curves for the red (665-nm, RED), green (520-nm, GRN), and IR (880-nm, IR) LEDs and filtered halogen lamp (HAL) plotted on a log scale.

Fig. 3
Fig. 3

Transmittance curves for the three sets of crossed polarizers: (a) plastic, (b) glass, (c) IR glass. The IR glass polarizers excluded the most light, yielding high ECs and larger amplitude signals than either the regular glass or the plastic polarizers but was not efficient for visible light.

Fig. 4
Fig. 4

Signal size is directly proportional to polarizer EC. The top four traces show birefringence signals obtained with a green LED that begins with the maximum EC and is decreased 25% in each subsequent trace by rotation of the analyzing polarizer. Signals contain 10 averages. The bottom trace displays the electrical physiological (EPH) response, and the vertical line indicates the time of stimulus.

Fig. 5
Fig. 5

Linear relation between max signal amplitude (dI/I) and %EC. A regression of %EC with %dI/I amplitude shows a slope of 101 and R2 = 0.997.

Fig. 6
Fig. 6

Gray traces show single-pass signals obtained with the green (GRN) and red (RED) LEDs with SNRs of 11:1. Black lines overlaying the gray display 15 average traces with 30:1 SNRs. The gray IR trace (IR) contains five averages with 56:1 SNR, increasing to 127:1 (black line) after 13 averages. The gray halogen trace (HAL) shows a single-pass trial, increasing to 20 averages in the black trace.

Metrics