Abstract

We present in vivo images of near-infrared (NIR) diffuse optical tomography (DOT) of human lower legs and forearm to validate the dual functions of a time-resolved (TR) NIR DOT in clinical diagnosis, i.e., to provide anatomical and functional information simultaneously. The NIR DOT system is composed of time-correlated single-photon-counting channels, and the image reconstruction algorithm is based on the modified generalized pulsed spectral technique, which effectively incorporates the TR data with reasonable computation time. The reconstructed scattering images of both the lower legs and the forearm revealed their anatomies, in which the bones were clearly distinguished from the muscles. In the absorption images, some of the blood vessels were observable. In the functional imaging, a subject was requested to do handgripping exercise to stimulate physiological changes in the forearm tissue. The images of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentration changes in the forearm were obtained from the differential images of the absorption at three wavelengths between the exercise and the rest states, which were reconstructed with a differential imaging scheme. These images showed increases in both blood volume and oxyhemoglobin concentration in the arteries and simultaneously showed hypoxia in the corresponding muscles. All the results have demonstrated the capability of TR NIR DOT by reconstruction of the absolute images of the scattering and the absorption with a high spatial resolution that finally provided both the anatomical and functional information inside bulky biological tissues.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Schmitz, H. L. Graber, H. Luo, R. L. Barbour, Y. Pei, S. Zhong, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
    [CrossRef]
  2. G. Strangman, D. A. Boas, J. Sutton, “Non-invasive neuro-imaging using near infrared light,” Biol. Psychiatry 52, 679–693 (2002).
    [CrossRef] [PubMed]
  3. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
    [CrossRef]
  4. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
    [CrossRef] [PubMed]
  5. R. Cubeddu, A. Pifferi, L. Spinelli, P. Taroni, A. Torricelli, “Breast lesion characterization by a novel nonlinear perturbation approach,” in Photon Migration and Diffuse-Light Imaging,D. A. Boas ed., Proc. SPIE5138, 23–29 (2003).
    [CrossRef]
  6. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  7. B. W. Pogue, M. Testorf, T. McBridge, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency domain diffuse optical tomographic imager for breast cancer detection,” Opt. Express1, 391–403 (1997), http://www.opticsexpress.org .
    [CrossRef]
  8. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
    [CrossRef]
  9. D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-resolved optical mammography and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
    [CrossRef]
  10. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
    [CrossRef] [PubMed]
  11. J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
    [CrossRef] [PubMed]
  12. A. Villringer, B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
    [CrossRef] [PubMed]
  13. D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 11, 57–75 (2001).
    [CrossRef]
  14. F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
    [CrossRef] [PubMed]
  15. F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” App. Opt. 39, 5898–5910 (2001).
    [CrossRef]
  16. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
    [CrossRef]
  17. H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
    [CrossRef] [PubMed]
  18. R. Cubeddu, G. Biscoti, A. Pifferi, P. Taroni, A. Torricelli, M. Ferrari, V. Quaresima, “Functional muscle studies by dual-wavelength, 8 channel time-resolved oximetry,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 29–34 (2003).
    [CrossRef]
  19. M. Klasing, J. Zange, “In vivo quantitative near-infrared spectroscopy in skeletal muscle and bone during rest and isometric exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 318–322 (2003).
    [CrossRef]
  20. M. C. P. van Beekvelt, K. Orbon, B. G. M. van Engelen, R. A. Wevers, W. N. J. M. Colier, “NIR spectroscopic measurement of local muscle metabolism during rhythmic, sustained and intermittent handgrip exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 35–45 (2003).
    [CrossRef]
  21. F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002).
  22. K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the application,” Phys. Rev. E 50, 3634–3640 (1994).
    [CrossRef]
  23. W. G. Egan, T. W. Hilgeman, eds., Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).
  24. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  25. S. R. Arridge, “Photon measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  26. S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  27. A. Matsukawa, T. Ito, K. Kimura, Transverse Anatomy of Human Body for Diagnosis with Imaging (Igaku Tosho Shuppan Co., LTD., Tokyo, Japan, 1987; in Japanese).
  28. I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).
  29. F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of an multichannel time resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Servick-Muraca eds., Proc. SPIE4250, 351–361 (2001).
    [CrossRef]
  30. H. Zhao, F. Gao, Y. Tanikawa, K. Homma, Y. Onodera, Y. Yamada, “Anatomical and functional images of in vitro and in vivo tissues by NIR time-domain diffuse optical tomography,” JSME Int. J. Ser. C 45, 1979–1993 (2002).
    [CrossRef]
  31. G. Zaccanti, A. Taddeucci, M. Barilli, P. Bruscaglioni, F. Martilli, “Optical properties of biological tissues,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir eds., Proc. SPIE2389, 513–521 (1995).
    [CrossRef]
  32. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef] [PubMed]
  33. S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
    [CrossRef] [PubMed]
  34. M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
    [CrossRef] [PubMed]
  35. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Thromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
    [CrossRef]
  36. H. Zhao, “Theoretical and experimental studies on near infrared time-resolved diffuse optical imaging,” Ph.D. dissertation (The University of Electro-Communications, Japan, 2004).
  37. L. A. Paunescu, “Tissue blood flow and oxygen consumption measured with near-infrared frequency-domain spectroscopy,” Ph.D. thesis (University Illinois at Urbana-Champaign, Ill., 2001).
  38. S. Homma, H. Eda, S. Ogasawara, A. Kagaya, “Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity,” J. Appl. Physiol. 80, 1279–1284 (1996).

2004 (1)

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

2002 (6)

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002).

G. Strangman, D. A. Boas, J. Sutton, “Non-invasive neuro-imaging using near infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, Y. Onodera, Y. Yamada, “Anatomical and functional images of in vitro and in vivo tissues by NIR time-domain diffuse optical tomography,” JSME Int. J. Ser. C 45, 1979–1993 (2002).
[CrossRef]

2001 (3)

D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 11, 57–75 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” App. Opt. 39, 5898–5910 (2001).
[CrossRef]

2000 (2)

C. H. Schmitz, H. L. Graber, H. Luo, R. L. Barbour, Y. Pei, S. Zhong, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

1999 (5)

1998 (2)

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

1997 (2)

1996 (1)

S. Homma, H. Eda, S. Ogasawara, A. Kagaya, “Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity,” J. Appl. Physiol. 80, 1279–1284 (1996).

1995 (3)

1994 (1)

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the application,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

1993 (1)

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Arridge, S. R.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, “Photon measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Barbour, R. L.

Barilli, M.

G. Zaccanti, A. Taddeucci, M. Barilli, P. Bruscaglioni, F. Martilli, “Optical properties of biological tissues,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Bevilacqua, F.

Biscoti, G.

R. Cubeddu, G. Biscoti, A. Pifferi, P. Taroni, A. Torricelli, M. Ferrari, V. Quaresima, “Functional muscle studies by dual-wavelength, 8 channel time-resolved oximetry,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 29–34 (2003).
[CrossRef]

Boas, D. A.

G. Strangman, D. A. Boas, J. Sutton, “Non-invasive neuro-imaging using near infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 11, 57–75 (2001).
[CrossRef]

Brooks, D. H.

D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 11, 57–75 (2001).
[CrossRef]

Bruscaglioni, P.

G. Zaccanti, A. Taddeucci, M. Barilli, P. Bruscaglioni, F. Martilli, “Optical properties of biological tissues,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Chance, B.

A. Villringer, B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[CrossRef] [PubMed]

Colier, W. N. J. M.

M. C. P. van Beekvelt, K. Orbon, B. G. M. van Engelen, R. A. Wevers, W. N. J. M. Colier, “NIR spectroscopic measurement of local muscle metabolism during rhythmic, sustained and intermittent handgrip exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 35–45 (2003).
[CrossRef]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, G. Biscoti, A. Pifferi, P. Taroni, A. Torricelli, M. Ferrari, V. Quaresima, “Functional muscle studies by dual-wavelength, 8 channel time-resolved oximetry,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 29–34 (2003).
[CrossRef]

R. Cubeddu, A. Pifferi, L. Spinelli, P. Taroni, A. Torricelli, “Breast lesion characterization by a novel nonlinear perturbation approach,” in Photon Migration and Diffuse-Light Imaging,D. A. Boas ed., Proc. SPIE5138, 23–29 (2003).
[CrossRef]

Dehghani, H.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Delpy, D. T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Depeursinge, C.

Dimarzio, C. A.

D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 11, 57–75 (2001).
[CrossRef]

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

S. Homma, H. Eda, S. Ogasawara, A. Kagaya, “Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity,” J. Appl. Physiol. 80, 1279–1284 (1996).

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Everdell, N.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Fantini, S.

Ferrari, M.

R. Cubeddu, G. Biscoti, A. Pifferi, P. Taroni, A. Torricelli, M. Ferrari, V. Quaresima, “Functional muscle studies by dual-wavelength, 8 channel time-resolved oximetry,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 29–34 (2003).
[CrossRef]

Firbank, M.

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Franceschini, M. A.

Furutsu, K.

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the application,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Gao, F.

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002).

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, Y. Onodera, Y. Yamada, “Anatomical and functional images of in vitro and in vivo tissues by NIR time-domain diffuse optical tomography,” JSME Int. J. Ser. C 45, 1979–1993 (2002).
[CrossRef]

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” App. Opt. 39, 5898–5910 (2001).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of an multichannel time resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Servick-Muraca eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Gaudette, R. J.

D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 11, 57–75 (2001).
[CrossRef]

Gerety, E. D.

Gibson, A.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Graber, H. L.

Grosenick, D.

Gross, J. D.

Haruna, M.

H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Hillman, E. M. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Homma, K.

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, Y. Onodera, Y. Yamada, “Anatomical and functional images of in vitro and in vivo tissues by NIR time-domain diffuse optical tomography,” JSME Int. J. Ser. C 45, 1979–1993 (2002).
[CrossRef]

Homma, S.

S. Homma, H. Eda, S. Ogasawara, A. Kagaya, “Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity,” J. Appl. Physiol. 80, 1279–1284 (1996).

Ito, T.

A. Matsukawa, T. Ito, K. Kimura, Transverse Anatomy of Human Body for Diagnosis with Imaging (Igaku Tosho Shuppan Co., LTD., Tokyo, Japan, 1987; in Japanese).

Ito, Y.

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Kagaya, A.

S. Homma, H. Eda, S. Ogasawara, A. Kagaya, “Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity,” J. Appl. Physiol. 80, 1279–1284 (1996).

Kaschke, M.

Kilmer, M.

D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 11, 57–75 (2001).
[CrossRef]

Kimura, K.

A. Matsukawa, T. Ito, K. Kimura, Transverse Anatomy of Human Body for Diagnosis with Imaging (Igaku Tosho Shuppan Co., LTD., Tokyo, Japan, 1987; in Japanese).

Klasing, M.

M. Klasing, J. Zange, “In vivo quantitative near-infrared spectroscopy in skeletal muscle and bone during rest and isometric exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 318–322 (2003).
[CrossRef]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Konish, I.

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

Luo, H.

Marquet, P.

Martilli, F.

G. Zaccanti, A. Taddeucci, M. Barilli, P. Bruscaglioni, F. Martilli, “Optical properties of biological tissues,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Matcher, S. J.

Matsukawa, A.

A. Matsukawa, T. Ito, K. Kimura, Transverse Anatomy of Human Body for Diagnosis with Imaging (Igaku Tosho Shuppan Co., LTD., Tokyo, Japan, 1987; in Japanese).

McBride, T. O.

Meek, J. H.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Moesta, K. T.

Oda, I.

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Ogasawara, S.

S. Homma, H. Eda, S. Ogasawara, A. Kagaya, “Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity,” J. Appl. Physiol. 80, 1279–1284 (1996).

Ohmi, M.

H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
[CrossRef] [PubMed]

Oikawa, Y.

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Onodera, Y.

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, Y. Onodera, Y. Yamada, “Anatomical and functional images of in vitro and in vivo tissues by NIR time-domain diffuse optical tomography,” JSME Int. J. Ser. C 45, 1979–1993 (2002).
[CrossRef]

H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of an multichannel time resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Servick-Muraca eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Orbon, K.

M. C. P. van Beekvelt, K. Orbon, B. G. M. van Engelen, R. A. Wevers, W. N. J. M. Colier, “NIR spectroscopic measurement of local muscle metabolism during rhythmic, sustained and intermittent handgrip exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 35–45 (2003).
[CrossRef]

Osterberg, U. L.

Paulsen, K. D.

Paunescu, L. A.

L. A. Paunescu, “Tissue blood flow and oxygen consumption measured with near-infrared frequency-domain spectroscopy,” Ph.D. thesis (University Illinois at Urbana-Champaign, Ill., 2001).

Pei, Y.

Pifferi, A.

R. Cubeddu, A. Pifferi, L. Spinelli, P. Taroni, A. Torricelli, “Breast lesion characterization by a novel nonlinear perturbation approach,” in Photon Migration and Diffuse-Light Imaging,D. A. Boas ed., Proc. SPIE5138, 23–29 (2003).
[CrossRef]

R. Cubeddu, G. Biscoti, A. Pifferi, P. Taroni, A. Torricelli, M. Ferrari, V. Quaresima, “Functional muscle studies by dual-wavelength, 8 channel time-resolved oximetry,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 29–34 (2003).
[CrossRef]

Piguet, D.

Pogue, B. W.

Poplack, S. B.

Poulet, P.

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” App. Opt. 39, 5898–5910 (2001).
[CrossRef]

Quaresima, V.

R. Cubeddu, G. Biscoti, A. Pifferi, P. Taroni, A. Torricelli, M. Ferrari, V. Quaresima, “Functional muscle studies by dual-wavelength, 8 channel time-resolved oximetry,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 29–34 (2003).
[CrossRef]

Rinneberg, H.

Sakauchi, N.

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of an multichannel time resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Servick-Muraca eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Schlag, P. M.

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Schmitz, C. H.

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Spinelli, L.

R. Cubeddu, A. Pifferi, L. Spinelli, P. Taroni, A. Torricelli, “Breast lesion characterization by a novel nonlinear perturbation approach,” in Photon Migration and Diffuse-Light Imaging,D. A. Boas ed., Proc. SPIE5138, 23–29 (2003).
[CrossRef]

Strangman, G.

G. Strangman, D. A. Boas, J. Sutton, “Non-invasive neuro-imaging using near infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

Sutton, J.

G. Strangman, D. A. Boas, J. Sutton, “Non-invasive neuro-imaging using near infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

Taddeucci, A.

G. Zaccanti, A. Taddeucci, M. Barilli, P. Bruscaglioni, F. Martilli, “Optical properties of biological tissues,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Takada, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Takeuchi, S.

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

Tamura, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Tanikawa, Y.

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002).

H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, Y. Onodera, Y. Yamada, “Anatomical and functional images of in vitro and in vivo tissues by NIR time-domain diffuse optical tomography,” JSME Int. J. Ser. C 45, 1979–1993 (2002).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of an multichannel time resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Servick-Muraca eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Taroni, P.

R. Cubeddu, G. Biscoti, A. Pifferi, P. Taroni, A. Torricelli, M. Ferrari, V. Quaresima, “Functional muscle studies by dual-wavelength, 8 channel time-resolved oximetry,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 29–34 (2003).
[CrossRef]

R. Cubeddu, A. Pifferi, L. Spinelli, P. Taroni, A. Torricelli, “Breast lesion characterization by a novel nonlinear perturbation approach,” in Photon Migration and Diffuse-Light Imaging,D. A. Boas ed., Proc. SPIE5138, 23–29 (2003).
[CrossRef]

Thromberg, B. J.

Torricelli, A.

R. Cubeddu, A. Pifferi, L. Spinelli, P. Taroni, A. Torricelli, “Breast lesion characterization by a novel nonlinear perturbation approach,” in Photon Migration and Diffuse-Light Imaging,D. A. Boas ed., Proc. SPIE5138, 23–29 (2003).
[CrossRef]

R. Cubeddu, G. Biscoti, A. Pifferi, P. Taroni, A. Torricelli, M. Ferrari, V. Quaresima, “Functional muscle studies by dual-wavelength, 8 channel time-resolved oximetry,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 29–34 (2003).
[CrossRef]

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Tsunazawa, Y.

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

van Beekvelt, M. C. P.

M. C. P. van Beekvelt, K. Orbon, B. G. M. van Engelen, R. A. Wevers, W. N. J. M. Colier, “NIR spectroscopic measurement of local muscle metabolism during rhythmic, sustained and intermittent handgrip exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 35–45 (2003).
[CrossRef]

van Engelen, B. G. M.

M. C. P. van Beekvelt, K. Orbon, B. G. M. van Engelen, R. A. Wevers, W. N. J. M. Colier, “NIR spectroscopic measurement of local muscle metabolism during rhythmic, sustained and intermittent handgrip exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 35–45 (2003).
[CrossRef]

Villringer, A.

A. Villringer, B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[CrossRef] [PubMed]

Wabnitz, H.

Wada, Y.

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Walker, S. A.

Wevers, R. A.

M. C. P. van Beekvelt, K. Orbon, B. G. M. van Engelen, R. A. Wevers, W. N. J. M. Colier, “NIR spectroscopic measurement of local muscle metabolism during rhythmic, sustained and intermittent handgrip exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 35–45 (2003).
[CrossRef]

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Yamada, Y.

H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, Y. Onodera, Y. Yamada, “Anatomical and functional images of in vitro and in vivo tissues by NIR time-domain diffuse optical tomography,” JSME Int. J. Ser. C 45, 1979–1993 (2002).
[CrossRef]

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002).

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” App. Opt. 39, 5898–5910 (2001).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the application,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of an multichannel time resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Servick-Muraca eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Yamashita, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Yusof, R. M.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Zaccanti, G.

G. Zaccanti, A. Taddeucci, M. Barilli, P. Bruscaglioni, F. Martilli, “Optical properties of biological tissues,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Zange, J.

M. Klasing, J. Zange, “In vivo quantitative near-infrared spectroscopy in skeletal muscle and bone during rest and isometric exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 318–322 (2003).
[CrossRef]

Zhang, Q.

D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 11, 57–75 (2001).
[CrossRef]

Zhao, H.

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, Y. Onodera, Y. Yamada, “Anatomical and functional images of in vitro and in vivo tissues by NIR time-domain diffuse optical tomography,” JSME Int. J. Ser. C 45, 1979–1993 (2002).
[CrossRef]

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002).

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of an multichannel time resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Servick-Muraca eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

H. Zhao, “Theoretical and experimental studies on near infrared time-resolved diffuse optical imaging,” Ph.D. dissertation (The University of Electro-Communications, Japan, 2004).

Zhong, S.

App. Opt. (1)

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” App. Opt. 39, 5898–5910 (2001).
[CrossRef]

Appl. Opt. (9)

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, R. L. Barbour, Y. Pei, S. Zhong, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-resolved optical mammography and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

S. R. Arridge, “Photon measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Thromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

Biol. Psychiatry (1)

G. Strangman, D. A. Boas, J. Sutton, “Non-invasive neuro-imaging using near infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

IEEE Signal Processing Mag. (1)

D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 11, 57–75 (2001).
[CrossRef]

IEICE Trans. Inf. Syst. (1)

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002).

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[CrossRef]

J. Appl. Physiol. (1)

S. Homma, H. Eda, S. Ogasawara, A. Kagaya, “Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity,” J. Appl. Physiol. 80, 1279–1284 (1996).

JSME Int. J. Ser. C (1)

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, Y. Onodera, Y. Yamada, “Anatomical and functional images of in vitro and in vivo tissues by NIR time-domain diffuse optical tomography,” JSME Int. J. Ser. C 45, 1979–1993 (2002).
[CrossRef]

Med. Phys. (1)

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Phys. Med. Biol. (6)

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, Y. Yamada, “Imaging of in vitro chicken leg by use of time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979–1993 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Phys. Rev. E (1)

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the application,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Shimadzu Rev. (1)

I. Konish, S. Takeuchi, Y. Oikawa, Y. Wada, N. Sakauchi, Y. Ito, I. Oda, Y. Tsunazawa, “Development of OMM-2000 Optical Multi-channel Monitor,” Shimadzu Rev. 57, 141–146 (2000, in Japanese).

Trends Neurosci. (1)

A. Villringer, B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[CrossRef] [PubMed]

Other (11)

R. Cubeddu, A. Pifferi, L. Spinelli, P. Taroni, A. Torricelli, “Breast lesion characterization by a novel nonlinear perturbation approach,” in Photon Migration and Diffuse-Light Imaging,D. A. Boas ed., Proc. SPIE5138, 23–29 (2003).
[CrossRef]

R. Cubeddu, G. Biscoti, A. Pifferi, P. Taroni, A. Torricelli, M. Ferrari, V. Quaresima, “Functional muscle studies by dual-wavelength, 8 channel time-resolved oximetry,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 29–34 (2003).
[CrossRef]

M. Klasing, J. Zange, “In vivo quantitative near-infrared spectroscopy in skeletal muscle and bone during rest and isometric exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 318–322 (2003).
[CrossRef]

M. C. P. van Beekvelt, K. Orbon, B. G. M. van Engelen, R. A. Wevers, W. N. J. M. Colier, “NIR spectroscopic measurement of local muscle metabolism during rhythmic, sustained and intermittent handgrip exercise,” in Photon Migration and Diffuse-Light Imaging, D. Boas ed., Proc. SPIE5138, 35–45 (2003).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBridge, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency domain diffuse optical tomographic imager for breast cancer detection,” Opt. Express1, 391–403 (1997), http://www.opticsexpress.org .
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of an multichannel time resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Servick-Muraca eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

G. Zaccanti, A. Taddeucci, M. Barilli, P. Bruscaglioni, F. Martilli, “Optical properties of biological tissues,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

W. G. Egan, T. W. Hilgeman, eds., Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).

A. Matsukawa, T. Ito, K. Kimura, Transverse Anatomy of Human Body for Diagnosis with Imaging (Igaku Tosho Shuppan Co., LTD., Tokyo, Japan, 1987; in Japanese).

H. Zhao, “Theoretical and experimental studies on near infrared time-resolved diffuse optical imaging,” Ph.D. dissertation (The University of Electro-Communications, Japan, 2004).

L. A. Paunescu, “Tissue blood flow and oxygen consumption measured with near-infrared frequency-domain spectroscopy,” Ph.D. thesis (University Illinois at Urbana-Champaign, Ill., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Relationship among the change in hemoglobin concentration and the absorption coefficients at two wavelengths that bestride the isosbestic point (λ1 < λ2).

Fig. 2
Fig. 2

Fiber arrangement on (a) subject A’s right lower leg and (b) subject A’s left lower legs. Sixteen fibers were arranged in an orderly counterclockwise direction (viewed from the foot to the leg). (c) Fiber arrangement on the right lower leg of subject B, with 16 fibers distributed in an orderly clockwise fashion (viewed from the foot to the leg). (d) Photograph of the NIR DOT measurement on subject B’s right lower leg. Black rubber was inserted between the fiber holder and the lower legs to form a circular boundary and to block the light leakage.

Fig. 3
Fig. 3

Experimental setup for imaging the forearm of subject C. Optical fibers for the NIR DOT measurement were fixed in an orderly arrangement by means of a fiber holder. During the task measurement, the subject executed rhythmic 50% MVC handgripping.

Fig. 4
Fig. 4

Relative effect of changes in concentration of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin on flexors of subject C’s forearm checked with the multichannel noninvasive oxygenation monitor during a handgripping exercise (gray bar).

Fig. 5
Fig. 5

Data type R in MGPST calculated with 2-D (solid curve) and 3-D (dashed curve) forward models for a 2-D domain and a cylinder with a size and an optical property distribution similar to those of the lower leg.

Fig. 6
Fig. 6

(a) Anatomy of a human right lower leg viewed from foot to leg (copied from Ref. 27). (b) MR image of subject A’s right lower leg (viewed from foot to leg) for showing the inner structure in the section near the imaging plane in the NIR DOT experiment. In the image the tibia and fibula have an average diameter of 21 and 11 mm, respectively. The separation between the centers of these two bones is approximately 28 mm in this section.

Fig. 7
Fig. 7

Some characteristic values on the cut profile of an image defined for the evaluation of a reconstructed image. μ ˜ i = (μi + μ0)/2 (i = 1, 2).

Fig. 8
Fig. 8

The μa (left column) and μs′ (right column) images showing the anatomy of subject A’s right lower leg.

Fig. 9
Fig. 9

The μa (left column) and μs′ (right column) images showing the anatomy of subject A’s left lower leg.

Fig. 10
Fig. 10

(a) The μa and (b) μs′ images at 759 nm of subject B’s lower leg at every reconstruction iteration: S-vein, short saphenous vein; G-vein, great saphenous vein; P-a&v, posterior tibial artery and vein.

Fig. 11
Fig. 11

The μa (left column) and μs′ (right column) images of subject C’s forearm in (a) the rest state and (b) the exercise state.

Fig. 12
Fig. 12

Ratio of the data type R at 759 nm (left), 799 nm (middle), and 834 nm (right) between the exercise and the rest states of subject C’s forearm for differential image reconstruction. The source site was fiber 1 and the x axis indicates the detector sites in degrees since the angle between two adjacent fibers was 22.5°.

Fig. 13
Fig. 13

Differential absorption coefficient (Δμa) images between the exercise and the rest states of subject C’s forearm at 759 nm (left), 799 nm (middle), and 834 nm (right).

Fig. 14
Fig. 14

Concentration changes of deoxyhemoglobin (left), oxyhemoglobin (middle), and total hemoglobin (right) between the exercise and the rest states of subject C’s forearm.

Tables (3)

Tables Icon

Table 1 Information about Experiments on the Lower Legs and the Forearm

Tables Icon

Table 2 Comparison of the Bone Sizes in NIR DOT Images in Fig. 11 (759 nm) and the MR Image of Subject C’s Forearm

Tables Icon

Table 3 Summary of the Optical Properties in the Images of Figs. 811 and a Comparison with Those in the Literature

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

{ [ κ ( r ) - μ a ( r ) c - p ] Φ ( r ,     r s ,     p ) = - δ ( r - r s ) c Φ ( r ,     r s ,     p ) = - 2 κ ( r ) ( 1 + G f 1 - G f ) e n Φ ( r ,     r s ,     p )             r Ω ,
R ( ξ d ,     ζ s ) = Γ ( ξ d ,     ζ s ,     p 2 ) / Γ ( ξ d ,     ζ s ,     p 1 ) .
δ R ( ξ d ,     ζ s ) = - [ J ( ξ d ,     ζ s ,     p 2 ) C ( p 2 ) Γ ( ξ d ,     ζ s ,     p 1 ) - R ( ξ d ,     ζ s ) J ( ξ d ,     ζ s ,     p 1 ) C ( p 1 ) Γ ( ξ d ,     ζ s ,     p 1 ) ] ,
J n ( ξ d ,     ζ s ,     p ) = Ω Γ ( ξ d ,     r ,     p ) Φ ( r ,     ζ s ,     p ) u n ( r ) d r ,
[ δ R 1 , 1 , 1 ( k ) δ R 2 , 1 , 1 ( k ) δ R d , s , f ( k ) δ R D , S , F ( k ) ] = [ W a , 1 , 1 , 1 , 1 ( k ) ,     W a , 2 , 1 , 1 , 1 ( k ) ,     ,     W a , N , 1 , 1 , 1 ( k ) ,     W s , 1 , 1 , 1 , 1 ( k ) ,     W s , 2 , 1 , 1 , 1 ( k ) ,     ,     W s , N , 1 , 1 , 1 ( k ) W a , 1 , 2 , 1 , 1 ( k ) ,     W a , 2 , 2 , 1 , 1 ( k ) ,     ,     W a , N , 2 , 1 , 1 ( k ) ,     W s , 1 , 2 , 1 , 1 ( k ) ,     W s , 2 , 2 , 1 , 1 ( k ) ,     ,     W s , N , 2 , 1 , 1 ( k ) W a , 1 , d , s , f ( k ) ,     W a , 2 , d , s , f ( k ) ,     ,     W a , N , d , s , f ( k ) ,     W s , 1 , d , s , f ( k ) ,     W s , 2 , d , s , f ( k ) ,     ,     W s , N , d , s , f ( k ) W a , 1 , D , S , F ( k ) ,     W a , 2 , D , S , F ( k ) ,     ,     W a , N , D , S , F ( k ) ,     W s , 1 D , S , F ( k ) ,     W s , 2 , D , S , F ( k ) ,     ,     W s , N , D , S , F ( k ) ] [ δ μ a , 1 ( k ) δ μ a , N ( k ) δ μ s , 1 ( k ) δ μ s , N ( k ) ]
W ν , n , d , s , f ( k ) = J ν , n ( k ) ( ξ d ,     ζ s ,     p 2 f ) Γ ( ξ d ,     ζ s ,     p 1 f ) - R f ( ξ d ,     ζ s ,     μ a ( k ) ,     μ s ( k ) ) × J ν , n ( k ) ( ξ d ,     ζ s ,     p 1 f ) Γ ( ξ d ,     ζ s ,     p 1 f )             ν ( a , s ) ,
{ J a , n ( k ) ( ξ d ,     ζ s ,     p i f ) = - c J n ( k ) ( ξ d ,     ζ s ,     p i f ) J s , n ( k ) ( ξ d ,     ζ s ,     p i f ) = J a , n ( k ) ( ξ d ,     ζ s ,     p i f ) ( μ a ( r n ) + p i f / c ) / μ s ( r n ) . i = 1 , 2
Δ R = R task o / R i R ref o / R i = R task o R ref o ,
Δ R × R ( μ a B ,     μ s B ) = F ( μ a ) + J μ a , n ( ξ d ,     ζ s ) Δ μ a ,
Δ μ a λ = ɛ HbO λ Δ [ HbO ] + ɛ Hb λ Δ [ Hb ] ,
Δ [ HbO ] = Δ μ a λ 1 ɛ Hb λ 2 - Δ μ a λ 2 ɛ Hb λ 1 ɛ HbO λ 1 ɛ Hb λ 2 - ɛ HbO λ 2 ɛ Hb λ 1 , Δ [ Hb ] = - Δ μ a λ 1 ɛ HbO λ 2 - Δ μ a λ 2 ɛ HbO λ 1 ɛ HbO λ 1 ɛ Hb λ 2 - ɛ HbO λ 2 ɛ Hb λ 1 , Δ [ total - Hb ] = Δ [ HbO ] + Δ [ Hb ] ,

Metrics