Abstract

Results are presented of a study to monitor the changes in the optical properties of breast tissue over a 12-month period after interstitial laser photocoagulation treatment of a fibroadenoma. The study involved generating cross-sectional images of the breast with a multichannel time-resolved imaging system and a nonlinear image reconstruction algorithm. Images of the internal absorbing and scattering properties revealed the expected initial inflammatory response, followed by the development of low-scattering cysts consistent with corresponding ultrasound examinations. Although results indicate that purely qualitative images can potentially provide clinically valuable data, means of enhancing diagnostic information by overcoming present limitations of the approach are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. O. McBride, B. W. Pogue, J. Jiang, U. L. Österberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrumen. 72, 1817–1824 (2001).
    [CrossRef]
  2. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
    [CrossRef] [PubMed]
  3. R. L. Barbour, C. H. Schmitz, D. P. Klemer, Y. Pei, H. L. Graber, “Design and initial testing of system for simultaneous dynamic optical tomographic mammography,” in Proceedings of Biomedical Optics Topical Meetings (Optical Society of America, Washington, DC, 2004), WD4.
  4. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszc-zynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
    [CrossRef] [PubMed]
  5. P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).
    [CrossRef] [PubMed]
  6. Y. Xu, X. Gu, L. L. Fajardo, H. Jiang, “In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations,” Appl. Opt. 42, 3163–3169 (2003).
    [CrossRef] [PubMed]
  7. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).
    [CrossRef] [PubMed]
  8. V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
    [CrossRef] [PubMed]
  9. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
    [CrossRef] [PubMed]
  10. D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
    [CrossRef]
  11. D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).
  12. J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).
  13. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
    [CrossRef]
  14. J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
    [CrossRef] [PubMed]
  15. S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
    [CrossRef]
  16. M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
    [CrossRef] [PubMed]
  17. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
    [CrossRef]
  18. J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.
  19. J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
    [CrossRef] [PubMed]
  20. J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
    [CrossRef] [PubMed]
  21. T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
    [CrossRef] [PubMed]
  22. A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, G. M. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multi-wavelength time-resolved optical mammography,” Opt. Express11, 853–967 (2003), http://www.opticsexpress.org .
    [CrossRef]
  23. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express9, 272–286 (2001), http://www.opticsexpress.org .
    [CrossRef]
  24. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).
    [CrossRef] [PubMed]

2004

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef]

D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).
[CrossRef] [PubMed]

2003

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

Y. Xu, X. Gu, L. L. Fajardo, H. Jiang, “In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations,” Appl. Opt. 42, 3163–3169 (2003).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszc-zynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).
[CrossRef] [PubMed]

2002

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

2001

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, J. Jiang, U. L. Österberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrumen. 72, 1817–1824 (2001).
[CrossRef]

2000

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

1999

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

1997

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).

’t Hooft, G. W.

Arridge, S. R.

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.

Austin, T.

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Barbour, R. L.

R. L. Barbour, C. H. Schmitz, D. P. Klemer, Y. Pei, H. L. Graber, “Design and initial testing of system for simultaneous dynamic optical tomographic mammography,” in Proceedings of Biomedical Optics Topical Meetings (Optical Society of America, Washington, DC, 2004), WD4.

Bevilacqua, F.

D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef]

Bland, T.

J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.

Boas, D. A.

Bown, S. G.

D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).

Briggs, G. M.

D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).

Brukilacchio, T. J.

Butler, J.

D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef]

Cerussi, A. E.

D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef]

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Chaves, T.

Chicken, D. W.

D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).

Choe, R.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Chorlton, M.

Colak, S. B.

Cubeddu, R.

P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).
[CrossRef] [PubMed]

Culver, J. P.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Danesini, G.

P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).
[CrossRef] [PubMed]

Dehghani, H.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

Delpy, D. T.

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).

J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.

Douek, M.

J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.

Durduran, T.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Everdell, N.

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Ever-dell, N.

J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.

Fajardo, L. L.

Fantini, S.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Gibson, A.

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.

Gonzalez, F. M.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Götz, L.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

Graber, H. L.

R. L. Barbour, C. H. Schmitz, D. P. Klemer, Y. Pei, H. L. Graber, “Design and initial testing of system for simultaneous dynamic optical tomographic mammography,” in Proceedings of Biomedical Optics Topical Meetings (Optical Society of America, Washington, DC, 2004), WD4.

Grosenick, D.

Gu, X.

Hall-Craggs, M. A.

D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).

Hebden, J. C.

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).

J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.

Heffer, E. L.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

Heinig, A.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

Heywang-Köbrunner, S.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

Hillman, E. M. C.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Hsiang, D.

D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef]

Jakubowki, D. B.

D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef]

Jiang, H.

Jiang, J.

T. O. McBride, B. W. Pogue, J. Jiang, U. L. Österberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrumen. 72, 1817–1824 (2001).
[CrossRef]

Jiang, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Keshtgar, M. R. S.

D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).

Kilmer, M. E.

Klemer, D. P.

R. L. Barbour, C. H. Schmitz, D. P. Klemer, Y. Pei, H. L. Graber, “Design and initial testing of system for simultaneous dynamic optical tomographic mammography,” in Proceedings of Biomedical Optics Topical Meetings (Optical Society of America, Washington, DC, 2004), WD4.

Kogel, C.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

Kopans, D. B.

Lee, A. C.

D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).

Li, A.

Macdonald, R.

Martelli, F.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

McBride, T. O.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, J. Jiang, U. L. Österberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrumen. 72, 1817–1824 (2001).
[CrossRef]

Meek, J. H.

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Melissen, J. B. M.

Miller, E. L.

Moesta, K. T.

Moore, R. H.

Mosse, A.

D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).

Mucke, J.

Ntziachristos, V.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Österberg, U. L.

T. O. McBride, B. W. Pogue, J. Jiang, U. L. Österberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrumen. 72, 1817–1824 (2001).
[CrossRef]

Paasschens, J. C. J.

Papaioannou, D. G.

Paulsen, K. D.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, J. Jiang, U. L. Österberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrumen. 72, 1817–1824 (2001).
[CrossRef]

Paulsen, P. D.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

Pei, Y.

R. L. Barbour, C. H. Schmitz, D. P. Klemer, Y. Pei, H. L. Graber, “Design and initial testing of system for simultaneous dynamic optical tomographic mammography,” in Proceedings of Biomedical Optics Topical Meetings (Optical Society of America, Washington, DC, 2004), WD4.

Pera, V. E.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

Pifferi, A.

P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, J. Jiang, U. L. Österberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrumen. 72, 1817–1824 (2001).
[CrossRef]

Poplack, S.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Poplack, S. P.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

Rinneberg, H.

Schlag, P. M.

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Schmitz, C. H.

R. L. Barbour, C. H. Schmitz, D. P. Klemer, Y. Pei, H. L. Graber, “Design and initial testing of system for simultaneous dynamic optical tomographic mammography,” in Proceedings of Biomedical Optics Topical Meetings (Optical Society of America, Washington, DC, 2004), WD4.

Schomberg, H.

Schütz, O.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

Schweiger, M.

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

Shah, N.

D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef]

Siebold, H.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

Spinelli, L.

P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).
[CrossRef] [PubMed]

Srinivasan, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

Stott, J.

Stroszc-zynski, C.

Taroni, P.

P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).
[CrossRef] [PubMed]

Torricelli, A.

P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).
[CrossRef] [PubMed]

Tosteson, T. D.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

Tromberg, B. J.

D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef]

van Asten, N.

van der Mark, M. B.

Veenstra, H.

Wabnitz, H.

Wells, W. A.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Wu, T.

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Xu, Y.

Yodh, A. G.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Yusof, R.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Yusof, R. Md.

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Zaccanti, G.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Zhang, Q.

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Brit. J. Radiol.

J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).

Brit. J. Surg.

D. W. Chicken, A. C. Lee, G. M. Briggs, A. Mosse, M. A. Hall-Craggs, S. G. Bown, M. R. S. Keshtgar, “Interstitial laser photocoagulation of fibroadenomas: a minimally invasive alternative to surgery,” Brit. J. Surg. 91(S1), 121 (2004).

J. Biomed. Opt.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, P. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

D. B. Jakubowki, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).
[CrossRef] [PubMed]

Med. Phys.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London Ser. B

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

Phys. Med. Biol.

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. Md. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. Md. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Rev. Sci. Instrumen.

T. O. McBride, B. W. Pogue, J. Jiang, U. L. Österberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrumen. 72, 1817–1824 (2001).
[CrossRef]

Other

R. L. Barbour, C. H. Schmitz, D. P. Klemer, Y. Pei, H. L. Graber, “Design and initial testing of system for simultaneous dynamic optical tomographic mammography,” in Proceedings of Biomedical Optics Topical Meetings (Optical Society of America, Washington, DC, 2004), WD4.

J. C. Hebden, T. Bland, E. M. C. Hillman, A. Gibson, N. Ever-dell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Proceedings of Biomedical Optical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, DC, 2002), pp. 187–189.

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, G. M. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multi-wavelength time-resolved optical mammography,” Opt. Express11, 853–967 (2003), http://www.opticsexpress.org .
[CrossRef]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express9, 272–286 (2001), http://www.opticsexpress.org .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ultrasound image of fibroadenoma recorded 1 week prior to treatment.

Fig. 2
Fig. 2

Absorption images reconstructed assuming constant scatter, acquired (a) 1 week before ILP treatment, (b) 1 week after treatment, (c) 3 months after treatment, (d) 6 months after treatment, (e) 9 months after treatment, (f) 12 months after treatment.

Fig. 3
Fig. 3

Ultrasound images of the treated region of the breast recorded (a) 3 months after treatment, (b) 6 months after treatment, (c) 12 months after treatment.

Fig. 4
Fig. 4

Absorption and scatter images generated (a) 1 week before treatment, (b) 1 week after treatment, (c) 3 months after treatment, (d) 6 months after treatment, (e) 9 months after treatment, (f) 12 months after treatment.

Metrics