Abstract

We propose a computational calibration method for optical tomography. The model of the calibration scheme is based on the rotation symmetry of source and detector positions in the measurement setup. The relative amplitude losses and phase shifts at the optic fibers are modeled by complex-valued coupling coefficients. The coupling coefficients can be estimated when optical tomography data from a homogeneous and isotropic object are given. Once these coupling coefficients have been estimated, any data measured with the same measurement setup can be corrected for the relative variation in the data due to source and detector losses. The final calibration of the data for the source and detector losses and the source calibration between the data and the forward model are obtained as part of the initial estimation for reconstruction. The calibration method was tested with simulations and measurements. The results show that the coupling coefficients of the sources and detectors can be estimated with good accuracy. Furthermore, the results show that the method can significantly improve the quality of reconstructed images.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous imaging and optode calibration with diffuse optical tomography

David A. Boas, Thomas Gaudette, and Simon R. Arridge
Opt. Express 8(5) 263-270 (2001)

Self-calibrated algorithms for diffuse optical tomography and bioluminescence tomography using relative transmission images

Mohamed A. Naser, Michael S. Patterson, and John W. Wong
Biomed. Opt. Express 3(11) 2794-2808 (2012)

Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon “replay”

Ruoyang Yao, Xavier Intes, and Qianqian Fang
Biomed. Opt. Express 9(10) 4588-4603 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription