Abstract

A multispectral direct chromophore and scattering reconstruction technique has been implemented for near-infrared frequency-domain tomography in recovering images of total hemoglobin, oxygen saturation, water, and scatter parameters. The method applies the spectral constraint of the chromophores and scattering spectra directly in the reconstruction algorithm, thereby reducing the parameter space of the inversion process. This new method was validated by use of simulated and experimental data, and results show better robustness and stability in the presence of higher levels of noise. The method suppresses artifacts, especially those significant in water and scatter power images, and reduces cross talk between chromophore and scatter parameters. Variation in scattering was followed by this spectral approach successfully in experimental data from 90-mm-diameter cylindrical phantoms, and results show linear variation in scatter amplitude and reduced scattering coefficient (μs′), with total hemoglobin, oxygen saturation, and water remaining constant and quantitatively accurate. Similar experiments were carried out for varying oxygen saturation and total hemoglobin. Accurate quantification was obtained with a mean error of 7.7% for oxygen saturation and 6.2% for total hemoglobin, with minimal cross talk between different parameters.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
    [CrossRef] [PubMed]
  2. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
    [CrossRef]
  3. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
    [CrossRef] [PubMed]
  4. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
    [CrossRef] [PubMed]
  5. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
    [CrossRef] [PubMed]
  6. S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
    [CrossRef]
  7. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  8. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
    [CrossRef]
  9. B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003).
    [CrossRef]
  10. Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23, 475–484 (2004).
    [CrossRef] [PubMed]
  11. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
    [CrossRef]
  12. T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXI, J. F. Dunn, H. M. Swartz, eds., (Pabst, Lengerich, Germany, 2001).
  13. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, New York, 1978).
  14. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  15. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical-tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
    [CrossRef] [PubMed]
  16. D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
    [CrossRef]
  17. W. H. Press, S. A. Teukolsky, W. J. Vetterling, B. P. Flannery, Numerical Recipes in Fortran: the Art of Scientific Computing,2nd ed. (Cambridge U. Press, Cambridge, UK, 1986).
  18. T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
    [CrossRef]
  19. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  20. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  21. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988).
    [CrossRef] [PubMed]
  22. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
    [PubMed]
  23. K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
    [CrossRef] [PubMed]
  24. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
    [CrossRef]
  25. X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
    [CrossRef] [PubMed]
  26. P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
    [PubMed]
  27. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, “Validation of hemoglobin and water molar absorption spectra in near-infrared diffuse optical tomography,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 407–415 (2003).
    [CrossRef]
  28. N. Varjavand, “The interactive oxyhemoglobin dissociation curve,” http://www.ventworld.com/resources/oxydisso/dissochtml.2002 .
  29. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
    [CrossRef] [PubMed]
  30. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
    [CrossRef] [PubMed]
  31. D. R. White, H. Q. Woodard, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
    [CrossRef] [PubMed]
  32. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
    [CrossRef] [PubMed]
  33. A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
    [CrossRef] [PubMed]
  34. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).
  35. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
  36. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
    [CrossRef] [PubMed]
  37. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
    [CrossRef] [PubMed]
  38. S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
    [CrossRef] [PubMed]
  39. M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
    [CrossRef] [PubMed]

2004 (6)

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
[CrossRef] [PubMed]

Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23, 475–484 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

2003 (5)

B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical-tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

2002 (4)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

2001 (3)

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

2000 (3)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).

M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
[CrossRef] [PubMed]

1999 (1)

1997 (2)

1996 (1)

1995 (2)

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

1993 (1)

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[PubMed]

1991 (1)

1990 (1)

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

1989 (1)

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

1988 (1)

1987 (1)

D. R. White, H. Q. Woodard, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

1963 (1)

D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Arridge, S. R.

Beauvoit, B.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[PubMed]

Berger, A. J.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Bevilacqua, F.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Bigio, I. J.

Boas, D. A.

Boyer, J.

Brandstatter, B.

B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003).
[CrossRef]

Brooksby, B.

Butler, J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

Cerussi, A.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

Cerussi, A. E.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

Chance, B.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[PubMed]

Choe, R.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Corlu, A.

Cubeddu, R.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).

Culver, J. P.

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

D’Andrea, C.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).

Dehghani, H.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical-tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, “Validation of hemoglobin and water molar absorption spectra in near-infrared diffuse optical tomography,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 407–415 (2003).
[CrossRef]

Durduran, T.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

Fang, Q.

Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23, 475–484 (2004).
[CrossRef] [PubMed]

Finder, C. A.

M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
[CrossRef] [PubMed]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. J. Vetterling, B. P. Flannery, Numerical Recipes in Fortran: the Art of Scientific Computing,2nd ed. (Cambridge U. Press, Cambridge, UK, 1986).

Fuselier, T.

Geimer, S. D.

Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23, 475–484 (2004).
[CrossRef] [PubMed]

Gerety, E.

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

Grosenick, D.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[CrossRef] [PubMed]

Grove, M. R.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

Hartov, A.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

Hillman, E. M.

Holboke, M. J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Holcombe, R. F.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Hollaus, K.

B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003).
[CrossRef]

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Hsiang, D.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Hutten, H.

B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, New York, 1978).

Jakubowski, D.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Jakubowski, D. B.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

Jiang, H.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Jiang, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, “Validation of hemoglobin and water molar absorption spectra in near-infrared diffuse optical tomography,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 407–415 (2003).
[CrossRef]

Johnson, T. M.

Kallinowski, F.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Kang, K.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[PubMed]

Kaplan, P. D.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[PubMed]

Kogel, C.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

Lanning, R.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

Li, A.

Liu, H.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[PubMed]

Macdonald, R.

Mandelson, M. T.

M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
[CrossRef] [PubMed]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Mayer, M.

B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003).
[CrossRef]

McBride, T. O.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXI, J. F. Dunn, H. M. Swartz, eds., (Pabst, Lengerich, Germany, 2001).

Meaney, P. M.

Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23, 475–484 (2004).
[CrossRef] [PubMed]

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

Merwa, R.

B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003).
[CrossRef]

Miller, E. L.

Miwa, M.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[PubMed]

Moes, C. J. M.

Moesta, K. T.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[CrossRef] [PubMed]

Moller, M.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

Moskowitz, M. J.

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

Mourant, J. R.

Mucke, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[CrossRef] [PubMed]

Oestreicher, N.

M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
[CrossRef] [PubMed]

Okunieff, P.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

Österberg, U. L.

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXI, J. F. Dunn, H. M. Swartz, eds., (Pabst, Lengerich, Germany, 2001).

Osterman, O. K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

Paulsen, K. D.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23, 475–484 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical-tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXI, J. F. Dunn, H. M. Swartz, eds., (Pabst, Lengerich, Germany, 2001).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, “Validation of hemoglobin and water molar absorption spectra in near-infrared diffuse optical tomography,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 407–415 (2003).
[CrossRef]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

Pifferi, A.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).

Pogue, B. W.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical-tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, “Validation of hemoglobin and water molar absorption spectra in near-infrared diffuse optical tomography,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 407–415 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXI, J. F. Dunn, H. M. Swartz, eds., (Pabst, Lengerich, Germany, 2001).

Poplack, S.

Poplack, S. P.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Porter, P. L.

M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
[CrossRef] [PubMed]

Prahl, S. A.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. J. Vetterling, B. P. Flannery, Numerical Recipes in Fortran: the Art of Scientific Computing,2nd ed. (Cambridge U. Press, Cambridge, UK, 1986).

Rinneberg, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[CrossRef] [PubMed]

Scharfetter, H.

B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003).
[CrossRef]

Schlag, P. M.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[CrossRef] [PubMed]

Schweiger, M.

Shah, N.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

Shepherd, A. P.

Shudong, J.

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

Soho, S. K.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

Srinivasan, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, “Validation of hemoglobin and water molar absorption spectra in near-infrared diffuse optical tomography,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 407–415 (2003).
[CrossRef]

Steinke, J. M.

Stossel, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

Streltsov, A. V.

Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23, 475–484 (2004).
[CrossRef] [PubMed]

Stroszczynski, C.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[CrossRef] [PubMed]

Sullivan, J. M.

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

Taplin, S. H.

M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. J. Vetterling, B. P. Flannery, Numerical Recipes in Fortran: the Art of Scientific Computing,2nd ed. (Cambridge U. Press, Cambridge, UK, 1986).

Torricelli, A.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).

Tosteson, T. D.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Tromberg, B. J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

Valentini, G.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).

van Gemert, J. C.

van Marle, J.

van Staveren, H. J.

Vaupel, P.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Vetterling, W. J.

W. H. Press, S. A. Teukolsky, W. J. Vetterling, B. P. Flannery, Numerical Recipes in Fortran: the Art of Scientific Computing,2nd ed. (Cambridge U. Press, Cambridge, UK, 1986).

Wabnitz, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[CrossRef] [PubMed]

Wassermann, B.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

Wells, W. A.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

White, D.

M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
[CrossRef] [PubMed]

White, D. R.

D. R. White, H. Q. Woodard, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

White, E.

M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
[CrossRef] [PubMed]

Wilson, B. C.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

Woodard, H. Q.

D. R. White, H. Q. Woodard, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

Wyman, D. R.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

Yodh, A. G.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Zhang, Q.

Zubkov, L.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Appl. Opt. (6)

Br. J. Radiol. (1)

D. R. White, H. Q. Woodard, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

Cancer Res. (1)

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Cell Biophys. (1)

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[PubMed]

IEEE Trans. Med. Imaging (3)

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002).
[CrossRef] [PubMed]

Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23, 475–484 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

J. Natl. Cancer Inst. (1)

M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Soc. Ind. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Lasers Med. Sci. (1)

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

Med. Phys. (1)

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Neoplasia (New York) (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000).
[CrossRef]

Opt. Lett. (2)

Philos. Trans. R. Soc. London Ser. B (1)

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

Photo-chem. Photobiol. (1)

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).

Phys. Med. Biol. (2)

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Physiol. Meas. (1)

B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).

Radiology (2)

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

Other (5)

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXI, J. F. Dunn, H. M. Swartz, eds., (Pabst, Lengerich, Germany, 2001).

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, New York, 1978).

W. H. Press, S. A. Teukolsky, W. J. Vetterling, B. P. Flannery, Numerical Recipes in Fortran: the Art of Scientific Computing,2nd ed. (Cambridge U. Press, Cambridge, UK, 1986).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, “Validation of hemoglobin and water molar absorption spectra in near-infrared diffuse optical tomography,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 407–415 (2003).
[CrossRef]

N. Varjavand, “The interactive oxyhemoglobin dissociation curve,” http://www.ventworld.com/resources/oxydisso/dissochtml.2002 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Recovered mean values with standard deviation error bars are shown for (a) hemoglobin, (b) oxygen saturation (SO2), (c) water (in percent), (d) scatter amplitude, and (e) scatter power. These were estimated from the interior of a homogeneous field reconstructed with different levels of noise in the original data. Values for the new spectrally constrained reconstruction are shown alongside results from the conventional approach.

Fig. 2
Fig. 2

Recovered mean values with standard deviation error bars are shown in (a) from reconstructed data with a 90-mm-diameter liquid phantom containing 1% Intralipid with 9.3-μM total hemoglobin. Values for the spectrally constrained reconstruction are shown alongside those obtained with the conventional reconstruction approach and the true theoretical values. (b) Images from this phantom are shown for comparison with the spectrally constrained reconstruction (top row), the conventional reconstruction (middle row), and the profile plots from the midplane of these images (bottom row).

Fig. 3
Fig. 3

Recovered mean values are shown from a series of phantoms in which the scattering coefficient was systematically varied through concentrations (Conc) of Intralipid ranging between 0.75% and 1.5%. The estimated scattering power and amplitudes are shown in (a), and the reduced scattering coefficients at 661 and 785 nm are shown in (b). The total hemoglobin, which did not vary, is shown in (c), along with a line corresponding to the theoretical value. In (d) the oxygen saturation and water values are shown, which also did not vary. Both have theoretical estimates of 100%. Error bars represent the standard deviation of all pixels within the interior 60 mm of the region imaged.

Fig. 4
Fig. 4

Estimated mean values are shown from homogeneous reconstructions of a phantom with varying oxygen partial pressure (PO2) of the solution induced by addition of yeast. The oxygen saturation is shown in (a), along with the theoretical estimate from the Hill curve. The total hemoglobin and percent water are shown in (b) with the theoretically estimated values of 18 mM and 100%, respectively, and should not vary with changes in oxygenation. The scatter power and amplitude are shown in (c) and should not vary. The reduced scattering coefficient at 785 nm is also shown in (d).

Fig. 5
Fig. 5

Reconstructed mean and standard deviation values are shown from phantoms with varying concentrations of blood in which the total hemoglobin is graphed (a) alongside the theoretical value shown by a dotted line. The recovered values of oxygen saturation (%), water (%), scattering amplitude (a) and scattering power (b) are shown in (b), all of which are not expected to vary with changes in total blood (%). The scatter parameters are multiplied by 100 to allow them to be displayed on the same graph as the oxygen saturation and the water.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

- · κ ( r ) Φ ( r ,     ω ) + ( μ a ( r ) + i ω c ) Φ ( r ,     ω ) = q 0 ( r ,     ω ) ,
κ ( r ) = 1 3 [ μ a ( r ) + μ s ( r ) ] ,
χ 2 = i [ ( ϕ i meas - ϕ i cal ) 2 σ i 2 ] ,
ϕ = J μ ,
μ a = [ ɛ ] c ,
μ s = a λ - b .
ϕ λ = J c , λ c + J a , λ a + J b , λ b ,
J c , λ = ϕ c | λ = ϕ μ μ c | λ ,
J c , λ = ϕ c | λ = ϕ μ ɛ | λ = ( ϕ μ | μ ) ( ɛ λ c 1 , c 2 , c 3 ) = J μ , λ ( ɛ λ c 1 , c 2 , c 3 ) ,
J a , λ = ϕ a | λ = ϕ κ κ a | λ .
κ a = ( κ μ s ) ( μ s a )
κ = 1 3 ( μ a + μ s ) ,
κ μ s = 1 3 [ - 1 ( μ a + μ s ) 2 ] = 1 3 ( - 9 κ 2 ) = - 3 κ 2 , μ s a = λ - b .
J a , λ = ϕ a = ϕ κ κ a λ = J κ ( - 3 κ 2 ) ( λ - b ) λ .
J b , λ = ϕ b = ϕ κ κ b | λ = ( ϕ κ ) ( κ μ s ) ( μ s ln μ s ) ( ln μ s b ) .
J b , λ = J κ ( - 3 κ 2 ) ( μ s ) ( - ln λ ) λ .
( ϕ λ 1 ϕ λ 1 ϕ λ n ) = [ J c 1 , λ 1 J c 2 , λ 1 J c 3 , λ 1 J a , λ 1 J b , λ 1 J c 1 , λ 2 J c 2 , λ 2 J c 3 , λ 2 J a , λ 2 J b , λ 2 J c 1 , λ n J c 2 , λ n J c 3 , λ n J a , λ n J b , λ n ] ( c 1 c 2 c 3 a b ) .

Metrics