Abstract

Time-resolved detection and analysis of skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. Single- and multiple-channel PPG concepts are discussed. Simultaneous data flow from several locations on the human body allows us to study heartbeat pulse-wave propagation in real time and to evaluate vascular resistance. Portable single-, dual-, and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The prototype devices have been clinically studied, and their potential for monitoring heart arrhythmias, drug-efficiency tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions has been confirmed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol. 124, 329–340 (1938).
  2. J. Spigulis, G. Venckus, M. Ozols, “Optical sensing for early cardiovascular diagnostics,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. Benaron, eds., Proc. SPIE3911, 27–31 (2000).
    [CrossRef]
  3. J. Spigulis, U. Rubins, “Photoplethysmographic sensor with smoothed output signals,” in Biomedical Sensors, Fibers, and Optical Delivery Systems,F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstroem, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 195–199 (1998).
    [CrossRef]
  4. G. Venckus, J. Spigulis, “Frequency filtering effects on the single-period photoplethysmography signals,” Med. Biol. Eng. Comput. 37, Suppl. 1, 218–219 (1999).
  5. M. Nitzan, H. de Boer, S. Turivnenko, A. Babchenko, D. Sapoznikov, “Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal,” J. Bas. Clin. Physiol. Pharmacol. 5(3–4), 269–276 (1994).
  6. J. Spigulis, I. Kukulis, E. Fridenberga, G. Venckus, “Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening,” in Clinical Diagnostics Systems: Technologies and Instrumentation, G. E. Cohn, ed., Proc. SPIE4625, 38–43 (2002).
  7. J. Spigulis, M. Ozols, R. Erts, K. Prieditis, “A portable device for optical assessment of the cardiovascular condition,” in Advanced Optical Devices, Technologies, and Medical Applications, J. Spigulis, J. Teteris, M. Ozolonsh, A. Lusis, eds., Proc. SPIE5123, 313–319 (2003).
  8. M. Ozols, J. Spigulis, “Acquisition of biosignals using the PC sound card,” in Proceedings of the International Conference on Biomedical Engineering (Kaunas University of Technology, Lithuania, 2001), pp. 24–27.
  9. J. Spigulis, R. Erts, M. Ozols, “A portable two-channel PPG cardiovascular sensor device,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 65–71 (2003).
    [CrossRef]
  10. J. Spigulis, R. Erts, V. Bernhards, “Optics for fitness assessment: potential of two-channel photoplethysmography techniques,” in Abstracts of the International Conference on Northern Optics 2003 (Helsinki University of Technology, Finland, 2003), Vol. 67, p. 67.
  11. J. Spigulis, R. Erts, I. Kukulis, M. Ozols, K. Prieditis, “Optical multi-channel sensing of skin blood pulsations,” in Optical Sensing, B. Culshaw, A. G. Mignani, R. Riesenberg, eds., Proc. SPIE5459, 46–53 (2004).
    [CrossRef]
  12. L. Brouha, A. Graybiel, C. W. Heath, “The step test. A simple method of measuring physical fitness for hard muscular work in adult men,” Rev. Canadian Biol. 2, 86–92 (1943).
  13. M. Nitzan, B. Khanokh, Y. Slovik, “The difference in pulse transit time to the toe and finger measured by photoplethysmography,” Physiol. Meas. 23, 85–93 (2002).
    [CrossRef] [PubMed]

2002

M. Nitzan, B. Khanokh, Y. Slovik, “The difference in pulse transit time to the toe and finger measured by photoplethysmography,” Physiol. Meas. 23, 85–93 (2002).
[CrossRef] [PubMed]

1999

G. Venckus, J. Spigulis, “Frequency filtering effects on the single-period photoplethysmography signals,” Med. Biol. Eng. Comput. 37, Suppl. 1, 218–219 (1999).

1994

M. Nitzan, H. de Boer, S. Turivnenko, A. Babchenko, D. Sapoznikov, “Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal,” J. Bas. Clin. Physiol. Pharmacol. 5(3–4), 269–276 (1994).

1943

L. Brouha, A. Graybiel, C. W. Heath, “The step test. A simple method of measuring physical fitness for hard muscular work in adult men,” Rev. Canadian Biol. 2, 86–92 (1943).

1938

A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol. 124, 329–340 (1938).

Babchenko, A.

M. Nitzan, H. de Boer, S. Turivnenko, A. Babchenko, D. Sapoznikov, “Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal,” J. Bas. Clin. Physiol. Pharmacol. 5(3–4), 269–276 (1994).

Bernhards, V.

J. Spigulis, R. Erts, V. Bernhards, “Optics for fitness assessment: potential of two-channel photoplethysmography techniques,” in Abstracts of the International Conference on Northern Optics 2003 (Helsinki University of Technology, Finland, 2003), Vol. 67, p. 67.

Brouha, L.

L. Brouha, A. Graybiel, C. W. Heath, “The step test. A simple method of measuring physical fitness for hard muscular work in adult men,” Rev. Canadian Biol. 2, 86–92 (1943).

de Boer, H.

M. Nitzan, H. de Boer, S. Turivnenko, A. Babchenko, D. Sapoznikov, “Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal,” J. Bas. Clin. Physiol. Pharmacol. 5(3–4), 269–276 (1994).

Erts, R.

J. Spigulis, R. Erts, I. Kukulis, M. Ozols, K. Prieditis, “Optical multi-channel sensing of skin blood pulsations,” in Optical Sensing, B. Culshaw, A. G. Mignani, R. Riesenberg, eds., Proc. SPIE5459, 46–53 (2004).
[CrossRef]

J. Spigulis, M. Ozols, R. Erts, K. Prieditis, “A portable device for optical assessment of the cardiovascular condition,” in Advanced Optical Devices, Technologies, and Medical Applications, J. Spigulis, J. Teteris, M. Ozolonsh, A. Lusis, eds., Proc. SPIE5123, 313–319 (2003).

J. Spigulis, R. Erts, M. Ozols, “A portable two-channel PPG cardiovascular sensor device,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 65–71 (2003).
[CrossRef]

J. Spigulis, R. Erts, V. Bernhards, “Optics for fitness assessment: potential of two-channel photoplethysmography techniques,” in Abstracts of the International Conference on Northern Optics 2003 (Helsinki University of Technology, Finland, 2003), Vol. 67, p. 67.

Fridenberga, E.

J. Spigulis, I. Kukulis, E. Fridenberga, G. Venckus, “Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening,” in Clinical Diagnostics Systems: Technologies and Instrumentation, G. E. Cohn, ed., Proc. SPIE4625, 38–43 (2002).

Graybiel, A.

L. Brouha, A. Graybiel, C. W. Heath, “The step test. A simple method of measuring physical fitness for hard muscular work in adult men,” Rev. Canadian Biol. 2, 86–92 (1943).

Heath, C. W.

L. Brouha, A. Graybiel, C. W. Heath, “The step test. A simple method of measuring physical fitness for hard muscular work in adult men,” Rev. Canadian Biol. 2, 86–92 (1943).

Hertzman, A. B.

A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol. 124, 329–340 (1938).

Khanokh, B.

M. Nitzan, B. Khanokh, Y. Slovik, “The difference in pulse transit time to the toe and finger measured by photoplethysmography,” Physiol. Meas. 23, 85–93 (2002).
[CrossRef] [PubMed]

Kukulis, I.

J. Spigulis, I. Kukulis, E. Fridenberga, G. Venckus, “Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening,” in Clinical Diagnostics Systems: Technologies and Instrumentation, G. E. Cohn, ed., Proc. SPIE4625, 38–43 (2002).

J. Spigulis, R. Erts, I. Kukulis, M. Ozols, K. Prieditis, “Optical multi-channel sensing of skin blood pulsations,” in Optical Sensing, B. Culshaw, A. G. Mignani, R. Riesenberg, eds., Proc. SPIE5459, 46–53 (2004).
[CrossRef]

Nitzan, M.

M. Nitzan, B. Khanokh, Y. Slovik, “The difference in pulse transit time to the toe and finger measured by photoplethysmography,” Physiol. Meas. 23, 85–93 (2002).
[CrossRef] [PubMed]

M. Nitzan, H. de Boer, S. Turivnenko, A. Babchenko, D. Sapoznikov, “Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal,” J. Bas. Clin. Physiol. Pharmacol. 5(3–4), 269–276 (1994).

Ozols, M.

J. Spigulis, G. Venckus, M. Ozols, “Optical sensing for early cardiovascular diagnostics,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. Benaron, eds., Proc. SPIE3911, 27–31 (2000).
[CrossRef]

J. Spigulis, R. Erts, I. Kukulis, M. Ozols, K. Prieditis, “Optical multi-channel sensing of skin blood pulsations,” in Optical Sensing, B. Culshaw, A. G. Mignani, R. Riesenberg, eds., Proc. SPIE5459, 46–53 (2004).
[CrossRef]

J. Spigulis, M. Ozols, R. Erts, K. Prieditis, “A portable device for optical assessment of the cardiovascular condition,” in Advanced Optical Devices, Technologies, and Medical Applications, J. Spigulis, J. Teteris, M. Ozolonsh, A. Lusis, eds., Proc. SPIE5123, 313–319 (2003).

J. Spigulis, R. Erts, M. Ozols, “A portable two-channel PPG cardiovascular sensor device,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 65–71 (2003).
[CrossRef]

M. Ozols, J. Spigulis, “Acquisition of biosignals using the PC sound card,” in Proceedings of the International Conference on Biomedical Engineering (Kaunas University of Technology, Lithuania, 2001), pp. 24–27.

Prieditis, K.

J. Spigulis, M. Ozols, R. Erts, K. Prieditis, “A portable device for optical assessment of the cardiovascular condition,” in Advanced Optical Devices, Technologies, and Medical Applications, J. Spigulis, J. Teteris, M. Ozolonsh, A. Lusis, eds., Proc. SPIE5123, 313–319 (2003).

J. Spigulis, R. Erts, I. Kukulis, M. Ozols, K. Prieditis, “Optical multi-channel sensing of skin blood pulsations,” in Optical Sensing, B. Culshaw, A. G. Mignani, R. Riesenberg, eds., Proc. SPIE5459, 46–53 (2004).
[CrossRef]

Rubins, U.

J. Spigulis, U. Rubins, “Photoplethysmographic sensor with smoothed output signals,” in Biomedical Sensors, Fibers, and Optical Delivery Systems,F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstroem, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 195–199 (1998).
[CrossRef]

Sapoznikov, D.

M. Nitzan, H. de Boer, S. Turivnenko, A. Babchenko, D. Sapoznikov, “Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal,” J. Bas. Clin. Physiol. Pharmacol. 5(3–4), 269–276 (1994).

Slovik, Y.

M. Nitzan, B. Khanokh, Y. Slovik, “The difference in pulse transit time to the toe and finger measured by photoplethysmography,” Physiol. Meas. 23, 85–93 (2002).
[CrossRef] [PubMed]

Spigulis, J.

G. Venckus, J. Spigulis, “Frequency filtering effects on the single-period photoplethysmography signals,” Med. Biol. Eng. Comput. 37, Suppl. 1, 218–219 (1999).

J. Spigulis, U. Rubins, “Photoplethysmographic sensor with smoothed output signals,” in Biomedical Sensors, Fibers, and Optical Delivery Systems,F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstroem, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 195–199 (1998).
[CrossRef]

J. Spigulis, G. Venckus, M. Ozols, “Optical sensing for early cardiovascular diagnostics,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. Benaron, eds., Proc. SPIE3911, 27–31 (2000).
[CrossRef]

J. Spigulis, I. Kukulis, E. Fridenberga, G. Venckus, “Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening,” in Clinical Diagnostics Systems: Technologies and Instrumentation, G. E. Cohn, ed., Proc. SPIE4625, 38–43 (2002).

J. Spigulis, M. Ozols, R. Erts, K. Prieditis, “A portable device for optical assessment of the cardiovascular condition,” in Advanced Optical Devices, Technologies, and Medical Applications, J. Spigulis, J. Teteris, M. Ozolonsh, A. Lusis, eds., Proc. SPIE5123, 313–319 (2003).

M. Ozols, J. Spigulis, “Acquisition of biosignals using the PC sound card,” in Proceedings of the International Conference on Biomedical Engineering (Kaunas University of Technology, Lithuania, 2001), pp. 24–27.

J. Spigulis, R. Erts, M. Ozols, “A portable two-channel PPG cardiovascular sensor device,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 65–71 (2003).
[CrossRef]

J. Spigulis, R. Erts, V. Bernhards, “Optics for fitness assessment: potential of two-channel photoplethysmography techniques,” in Abstracts of the International Conference on Northern Optics 2003 (Helsinki University of Technology, Finland, 2003), Vol. 67, p. 67.

J. Spigulis, R. Erts, I. Kukulis, M. Ozols, K. Prieditis, “Optical multi-channel sensing of skin blood pulsations,” in Optical Sensing, B. Culshaw, A. G. Mignani, R. Riesenberg, eds., Proc. SPIE5459, 46–53 (2004).
[CrossRef]

Turivnenko, S.

M. Nitzan, H. de Boer, S. Turivnenko, A. Babchenko, D. Sapoznikov, “Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal,” J. Bas. Clin. Physiol. Pharmacol. 5(3–4), 269–276 (1994).

Venckus, G.

G. Venckus, J. Spigulis, “Frequency filtering effects on the single-period photoplethysmography signals,” Med. Biol. Eng. Comput. 37, Suppl. 1, 218–219 (1999).

J. Spigulis, G. Venckus, M. Ozols, “Optical sensing for early cardiovascular diagnostics,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. Benaron, eds., Proc. SPIE3911, 27–31 (2000).
[CrossRef]

J. Spigulis, I. Kukulis, E. Fridenberga, G. Venckus, “Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening,” in Clinical Diagnostics Systems: Technologies and Instrumentation, G. E. Cohn, ed., Proc. SPIE4625, 38–43 (2002).

Am. J. Physiol.

A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol. 124, 329–340 (1938).

J. Bas. Clin. Physiol. Pharmacol.

M. Nitzan, H. de Boer, S. Turivnenko, A. Babchenko, D. Sapoznikov, “Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal,” J. Bas. Clin. Physiol. Pharmacol. 5(3–4), 269–276 (1994).

Med. Biol. Eng. Comput.

G. Venckus, J. Spigulis, “Frequency filtering effects on the single-period photoplethysmography signals,” Med. Biol. Eng. Comput. 37, Suppl. 1, 218–219 (1999).

Physiol. Meas.

M. Nitzan, B. Khanokh, Y. Slovik, “The difference in pulse transit time to the toe and finger measured by photoplethysmography,” Physiol. Meas. 23, 85–93 (2002).
[CrossRef] [PubMed]

Rev. Canadian Biol.

L. Brouha, A. Graybiel, C. W. Heath, “The step test. A simple method of measuring physical fitness for hard muscular work in adult men,” Rev. Canadian Biol. 2, 86–92 (1943).

Other

J. Spigulis, G. Venckus, M. Ozols, “Optical sensing for early cardiovascular diagnostics,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. Benaron, eds., Proc. SPIE3911, 27–31 (2000).
[CrossRef]

J. Spigulis, U. Rubins, “Photoplethysmographic sensor with smoothed output signals,” in Biomedical Sensors, Fibers, and Optical Delivery Systems,F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstroem, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 195–199 (1998).
[CrossRef]

J. Spigulis, I. Kukulis, E. Fridenberga, G. Venckus, “Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening,” in Clinical Diagnostics Systems: Technologies and Instrumentation, G. E. Cohn, ed., Proc. SPIE4625, 38–43 (2002).

J. Spigulis, M. Ozols, R. Erts, K. Prieditis, “A portable device for optical assessment of the cardiovascular condition,” in Advanced Optical Devices, Technologies, and Medical Applications, J. Spigulis, J. Teteris, M. Ozolonsh, A. Lusis, eds., Proc. SPIE5123, 313–319 (2003).

M. Ozols, J. Spigulis, “Acquisition of biosignals using the PC sound card,” in Proceedings of the International Conference on Biomedical Engineering (Kaunas University of Technology, Lithuania, 2001), pp. 24–27.

J. Spigulis, R. Erts, M. Ozols, “A portable two-channel PPG cardiovascular sensor device,” in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed., Proc. SPIE5138, 65–71 (2003).
[CrossRef]

J. Spigulis, R. Erts, V. Bernhards, “Optics for fitness assessment: potential of two-channel photoplethysmography techniques,” in Abstracts of the International Conference on Northern Optics 2003 (Helsinki University of Technology, Finland, 2003), Vol. 67, p. 67.

J. Spigulis, R. Erts, I. Kukulis, M. Ozols, K. Prieditis, “Optical multi-channel sensing of skin blood pulsations,” in Optical Sensing, B. Culshaw, A. G. Mignani, R. Riesenberg, eds., Proc. SPIE5459, 46–53 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Portable version of single-channel PPG sensor: application for the fingertip monitoring.

Fig. 2
Fig. 2

Dual-channel PPG sensor device: functional scheme.

Fig. 3
Fig. 3

Four-channel PPG monitoring screen shot during the clinical measurements.

Fig. 4
Fig. 4

Mean SP-PPG signal shape for (a) a healthy person and (b) five diabetic patients.

Fig. 5
Fig. 5

Mean SP-PPG signal changes of an atherosclerotic patient (a) 3, …, 7 min. after taking a nitroglycerine dose and (b) [with amplitude ratio S(t2)/S(t1)] the related time development of the vessel-opening drug effect.

Fig. 6
Fig. 6

Observed abnormal heart functioning: missing heartbeats for (a) a female, age 30, and (b) a male, age 65.

Fig. 7
Fig. 7

Abnormal responses of the cardiovascular system to intensive physical exercises: (a) arrhythmic, (b) spasmatic.

Fig. 8
Fig. 8

Data extraction example: pulse-rate variations during rest phases of the fitness test: horizontal, vertical, and relaxed sitting.

Fig. 9
Fig. 9

Distributions of (a) the mean pulse-rate increase and (b) the change of the pulse-wave transit time after patient stands from a lying position.

Fig. 10
Fig. 10

Comparison of the four-channel PPG recordings taken from a patient with signs of the left arm occlusion (A) and from a healthy volunteer (B).

Fig. 11
Fig. 11

Variations of the time shift between PPG pulses detected from the fingertips of both arms: (a) 65-year-old patient with left-side arterial occlusion, (b) 26-year-old healthy volunteer.

Metrics