Abstract

We discuss the refractive-index measurement of biological tissues by total internal reflection. The methodology of the measurement is illuminated comprehensively, and an experimental setup, combined with a data processing program, is developed correspondingly. Refractive indices of typical tissue samples are measured by use of the developed methodology. The agreement of our measurements with the reported results shows the validity of our scheme, which has the potential for being a simple, quick, and low-cost practical means for determining the refractive index of a turbid medium. Moreover, an empirical formula for evaluating the refractive index of Intralipid suspensions with different concentrations is also presented according to experimental measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Motamedi, S. Rastegar, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
    [Crossref] [PubMed]
  2. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
    [Crossref] [PubMed]
  3. A. Knuttel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
    [Crossref] [PubMed]
  4. F. Bolin, L. Preuss, R. Taylor, R. Ference, “Refractive index of some mammalian tissues using a fiber optics cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [Crossref] [PubMed]
  5. H. Li, S. Xie, “Measurement method of the refractive index of biotissue by total internal reflection,” Appl. Opt. 35, 1793–1795 (1996).
    [Crossref] [PubMed]
  6. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
    [Crossref] [PubMed]
  7. S. A. Alexandrov, A. V. Zvyagin, K. K. M. B. D. Silva, D. D. Sampson, “Bifocal optical coherence refractometry of turbid media,” Opt. Lett. 28, 117–119 (2003).
    [Crossref] [PubMed]
  8. J. M. Schmitt, G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
    [Crossref] [PubMed]
  9. J. Rheims, J. Kosery, T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
    [Crossref]
  10. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [Crossref] [PubMed]
  11. V. V. Tuchin, “Tissue image contrasting using optical immersion technique,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 351–365 (2000).
    [Crossref]

2003 (1)

2000 (1)

A. Knuttel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
[Crossref] [PubMed]

1997 (2)

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[Crossref] [PubMed]

J. Rheims, J. Kosery, T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

1996 (2)

1995 (1)

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

1989 (2)

Alexandrov, S. A.

Arridge, S. R.

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[Crossref] [PubMed]

Boehlau-Godau, M.

A. Knuttel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
[Crossref] [PubMed]

Bolin, F.

Bouma, B. E.

Brezinski, M. E.

Ference, R.

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Fujimoto, J. G.

Hebden, J. C.

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[Crossref] [PubMed]

Hee, M. R.

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Knuttel, A.

A. Knuttel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
[Crossref] [PubMed]

Kosery, J.

J. Rheims, J. Kosery, T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Kumar, G.

Li, H.

Motamedi, M.

Preuss, L.

Rastegar, S.

Rheims, J.

J. Rheims, J. Kosery, T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Sampson, D. D.

Schmitt, J. M.

Silva, K. K. M. B. D.

Southern, J. F.

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Taylor, R.

Tearney, G. J.

Tuchin, V. V.

V. V. Tuchin, “Tissue image contrasting using optical immersion technique,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 351–365 (2000).
[Crossref]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Wriedt, T.

J. Rheims, J. Kosery, T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Xie, S.

Zvyagin, A. V.

Appl. Opt. (3)

J. Biomed. Opt. (1)

A. Knuttel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

J. Rheims, J. Kosery, T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Opt. Lett. (3)

Phys. Med. Biol. (1)

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[Crossref] [PubMed]

Other (1)

V. V. Tuchin, “Tissue image contrasting using optical immersion technique,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 351–365 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup for measurement of the index of refraction.

Fig. 2
Fig. 2

Reflectance profile of the AC interface RAC(r) when the measured sample is porcine kidney.

Fig. 3
Fig. 3

Reflectance profile of the AC interface RAC(r) obtained by theoretical calculation when the refractive index of the prism is 1.51468.

Fig. 4
Fig. 4

Reflectance profile of the measuring system I(i)/I0 when the measured sample is porcine kidney.

Tables (1)

Tables Icon

Table 1 Refractive Index of Some Samples under a Wavelength of 632.8 nm

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R A C ( r ) = I ( i ) I 0 [ 1 - R A B ( i ) ] [ 1 - R B C ( i ) ] ,
r = sin - 1 ( 1 n 0 sin ( i ) ) + 45 ° ,
0 ° 90 ° [ R ( r ) - R t ( n ¯ , r ) ] d r ,
R t ( n ¯ , r ) = sin 2 ( r - r ) sin 2 ( r + r ) ,
r = arcsin ( n 0 sin r n ¯ ) ,
min r ¯ c r ¯ - 5 ° r ¯ c + 5 ° [ R A C ( r ) - R t ( r ¯ c ,     r ) ] d r ,
n ¯ = n 0 sin r ¯ c ,
n = a n 1 + b n 2 ,
Δ n ¯ = n 0 cos ( r ¯ c ) Δ r ¯ c ,
Δ r = cos i n 0 [ 1 - ( sin i / n 0 ) 2 ] 1 / 2 Δ i ,
i = sin - 1 [ n 0 sin ( r - 45 ° ) ] ,

Metrics