Abstract

Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Jonas, X. N. Nguyen, G. O. Naumann, “Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data,” Invest. Ophthalmol. Visual Sci. 30, 1599–1603 (1989).
  2. J. E. Grunwald, A. J. Brucker, S. E. Grunwald, C. E. Riva, “Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 34, 66–71 (1993).
  3. T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
    [CrossRef] [PubMed]
  4. L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
    [CrossRef] [PubMed]
  5. M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
    [CrossRef]
  6. H. C. Chen, V. Patel, J. Wiek, S. M. Rassam, E. M. Kohner, “Vessel diameter changes during the cardiac cycle,” Eye 8, 97–103 (1994).
    [CrossRef] [PubMed]
  7. M. J. Dumskyj, S. J. Aldington, C. J. Dore, E. M. Kohner, “The accurate assessment of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised fundus photography,” Curr. Eye. Res. 15, 625–632 (1996).
    [CrossRef] [PubMed]
  8. H. Heier, O. Brinchmann-Hansen, “Reliable measurements from fundus photographs in the presence of focusing errors,” Invest. Ophthalmol. Visual Sci. 30, 674–677 (1989).
  9. L. Gang, O. Chutatpe, S. M. Krishnan, “Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter,” IEEE Trans. Biomed. Eng. 49, 168–172 (2002).
    [CrossRef] [PubMed]
  10. N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).
  11. S. Chaudhuri, S. Chatterjee, N. Katz, M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imaging 8, 263–269 (1989).
    [CrossRef] [PubMed]
  12. A. Hoover, V. Kouznetsova, M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Trans. Med. Imaging 19, 203–210 (2000).
    [CrossRef] [PubMed]
  13. K. A. Vermeer, F. M. Vos, H. G. Lemij, A. M. Vossepoel, “A model based method for retinal blood vessel detection,” Comp. Biol. Med. 34, 209–219 (2004).
    [CrossRef]
  14. O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives (Thomas, Springfield, Ill.1970).
  15. W. A. Eaton, E. R. Henry, J. Hofrichter, A. Mozzarelli, “Is cooperative oxygen binding by hemoglobin really understood?” Nat. Struct. Biol. 6, 351–358 (1999).
    [CrossRef] [PubMed]
  16. V. Twersky, “Absorption and multiple scattering by biological suspensions,” J. Opt. Soc. Am. 60, 1084–1093 (1970).
    [CrossRef] [PubMed]
  17. M. H. Smith, K. R. Denninghoff, A. Lompado, L. W. Hillman, “Effect of multiple light paths on retinal vessel oximetry,” Appl. Opt. 39, 1183–1193 (2000).
    [CrossRef]
  18. M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
    [CrossRef] [PubMed]

2004 (2)

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

K. A. Vermeer, F. M. Vos, H. G. Lemij, A. M. Vossepoel, “A model based method for retinal blood vessel detection,” Comp. Biol. Med. 34, 209–219 (2004).
[CrossRef]

2002 (1)

L. Gang, O. Chutatpe, S. M. Krishnan, “Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter,” IEEE Trans. Biomed. Eng. 49, 168–172 (2002).
[CrossRef] [PubMed]

2001 (3)

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

2000 (2)

A. Hoover, V. Kouznetsova, M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Trans. Med. Imaging 19, 203–210 (2000).
[CrossRef] [PubMed]

M. H. Smith, K. R. Denninghoff, A. Lompado, L. W. Hillman, “Effect of multiple light paths on retinal vessel oximetry,” Appl. Opt. 39, 1183–1193 (2000).
[CrossRef]

1999 (2)

W. A. Eaton, E. R. Henry, J. Hofrichter, A. Mozzarelli, “Is cooperative oxygen binding by hemoglobin really understood?” Nat. Struct. Biol. 6, 351–358 (1999).
[CrossRef] [PubMed]

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

1996 (1)

M. J. Dumskyj, S. J. Aldington, C. J. Dore, E. M. Kohner, “The accurate assessment of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised fundus photography,” Curr. Eye. Res. 15, 625–632 (1996).
[CrossRef] [PubMed]

1994 (1)

H. C. Chen, V. Patel, J. Wiek, S. M. Rassam, E. M. Kohner, “Vessel diameter changes during the cardiac cycle,” Eye 8, 97–103 (1994).
[CrossRef] [PubMed]

1993 (1)

J. E. Grunwald, A. J. Brucker, S. E. Grunwald, C. E. Riva, “Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 34, 66–71 (1993).

1989 (3)

J. B. Jonas, X. N. Nguyen, G. O. Naumann, “Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data,” Invest. Ophthalmol. Visual Sci. 30, 1599–1603 (1989).

H. Heier, O. Brinchmann-Hansen, “Reliable measurements from fundus photographs in the presence of focusing errors,” Invest. Ophthalmol. Visual Sci. 30, 674–677 (1989).

S. Chaudhuri, S. Chatterjee, N. Katz, M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imaging 8, 263–269 (1989).
[CrossRef] [PubMed]

1970 (1)

Aldington, S. J.

M. J. Dumskyj, S. J. Aldington, C. J. Dore, E. M. Kohner, “The accurate assessment of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised fundus photography,” Curr. Eye. Res. 15, 625–632 (1996).
[CrossRef] [PubMed]

Bharath, A. A.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).

Brinchmann-Hansen, O.

H. Heier, O. Brinchmann-Hansen, “Reliable measurements from fundus photographs in the presence of focusing errors,” Invest. Ophthalmol. Visual Sci. 30, 674–677 (1989).

Brothers, R. J.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Brucker, A. J.

J. E. Grunwald, A. J. Brucker, S. E. Grunwald, C. E. Riva, “Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 34, 66–71 (1993).

Bulla, C. P.

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

Cai, J.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Chapman, N.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).

Chatterjee, S.

S. Chaudhuri, S. Chatterjee, N. Katz, M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imaging 8, 263–269 (1989).
[CrossRef] [PubMed]

Chaudhuri, S.

S. Chaudhuri, S. Chatterjee, N. Katz, M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imaging 8, 263–269 (1989).
[CrossRef] [PubMed]

Chen, H. C.

H. C. Chen, V. Patel, J. Wiek, S. M. Rassam, E. M. Kohner, “Vessel diameter changes during the cardiac cycle,” Eye 8, 97–103 (1994).
[CrossRef] [PubMed]

Chutatpe, O.

L. Gang, O. Chutatpe, S. M. Krishnan, “Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter,” IEEE Trans. Biomed. Eng. 49, 168–172 (2002).
[CrossRef] [PubMed]

Clegg, L. X.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Cooper, L. S.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Davis, M. D.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Denninghoff, K. R.

Dore, C. J.

M. J. Dumskyj, S. J. Aldington, C. J. Dore, E. M. Kohner, “The accurate assessment of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised fundus photography,” Curr. Eye. Res. 15, 625–632 (1996).
[CrossRef] [PubMed]

Dumskyj, M. J.

M. J. Dumskyj, S. J. Aldington, C. J. Dore, E. M. Kohner, “The accurate assessment of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised fundus photography,” Curr. Eye. Res. 15, 625–632 (1996).
[CrossRef] [PubMed]

Eaton, W. A.

W. A. Eaton, E. R. Henry, J. Hofrichter, A. Mozzarelli, “Is cooperative oxygen binding by hemoglobin really understood?” Nat. Struct. Biol. 6, 351–358 (1999).
[CrossRef] [PubMed]

Gang, L.

L. Gang, O. Chutatpe, S. M. Krishnan, “Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter,” IEEE Trans. Biomed. Eng. 49, 168–172 (2002).
[CrossRef] [PubMed]

Gao, X.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).

Goldbaum, M.

A. Hoover, V. Kouznetsova, M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Trans. Med. Imaging 19, 203–210 (2000).
[CrossRef] [PubMed]

S. Chaudhuri, S. Chatterjee, N. Katz, M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imaging 8, 263–269 (1989).
[CrossRef] [PubMed]

Grunwald, J. E.

J. E. Grunwald, A. J. Brucker, S. E. Grunwald, C. E. Riva, “Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 34, 66–71 (1993).

Grunwald, S. E.

J. E. Grunwald, A. J. Brucker, S. E. Grunwald, C. E. Riva, “Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 34, 66–71 (1993).

Hammer, M.

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

Heier, H.

H. Heier, O. Brinchmann-Hansen, “Reliable measurements from fundus photographs in the presence of focusing errors,” Invest. Ophthalmol. Visual Sci. 30, 674–677 (1989).

Henry, E. R.

W. A. Eaton, E. R. Henry, J. Hofrichter, A. Mozzarelli, “Is cooperative oxygen binding by hemoglobin really understood?” Nat. Struct. Biol. 6, 351–358 (1999).
[CrossRef] [PubMed]

Hillman, L. W.

Hofrichter, J.

W. A. Eaton, E. R. Henry, J. Hofrichter, A. Mozzarelli, “Is cooperative oxygen binding by hemoglobin really understood?” Nat. Struct. Biol. 6, 351–358 (1999).
[CrossRef] [PubMed]

Hoover, A.

A. Hoover, V. Kouznetsova, M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Trans. Med. Imaging 19, 203–210 (2000).
[CrossRef] [PubMed]

Hubbard, L.

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Hubbard, L. D.

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Hughes, A. D.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).

Jonas, J. B.

J. B. Jonas, X. N. Nguyen, G. O. Naumann, “Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data,” Invest. Ophthalmol. Visual Sci. 30, 1599–1603 (1989).

Katz, N.

S. Chaudhuri, S. Chatterjee, N. Katz, M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imaging 8, 263–269 (1989).
[CrossRef] [PubMed]

King, W. N.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Klein, B. E.

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Klein, R.

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Knudtson, M. D.

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

Kohner, E. M.

M. J. Dumskyj, S. J. Aldington, C. J. Dore, E. M. Kohner, “The accurate assessment of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised fundus photography,” Curr. Eye. Res. 15, 625–632 (1996).
[CrossRef] [PubMed]

H. C. Chen, V. Patel, J. Wiek, S. M. Rassam, E. M. Kohner, “Vessel diameter changes during the cardiac cycle,” Eye 8, 97–103 (1994).
[CrossRef] [PubMed]

Kouznetsova, V.

A. Hoover, V. Kouznetsova, M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Trans. Med. Imaging 19, 203–210 (2000).
[CrossRef] [PubMed]

Krishnan, S. M.

L. Gang, O. Chutatpe, S. M. Krishnan, “Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter,” IEEE Trans. Biomed. Eng. 49, 168–172 (2002).
[CrossRef] [PubMed]

Lee, K. E.

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

Leistritz, L.

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

Leistritz, S.

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

Lemij, H. G.

K. A. Vermeer, F. M. Vos, H. G. Lemij, A. M. Vossepoel, “A model based method for retinal blood vessel detection,” Comp. Biol. Med. 34, 209–219 (2004).
[CrossRef]

Lompado, A.

Meuer, S. M.

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

Mozzarelli, A.

W. A. Eaton, E. R. Henry, J. Hofrichter, A. Mozzarelli, “Is cooperative oxygen binding by hemoglobin really understood?” Nat. Struct. Biol. 6, 351–358 (1999).
[CrossRef] [PubMed]

Naumann, G. O.

J. B. Jonas, X. N. Nguyen, G. O. Naumann, “Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data,” Invest. Ophthalmol. Visual Sci. 30, 1599–1603 (1989).

Nguyen, X. N.

J. B. Jonas, X. N. Nguyen, G. O. Naumann, “Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data,” Invest. Ophthalmol. Visual Sci. 30, 1599–1603 (1989).

Nieto, F. J.

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Patel, V.

H. C. Chen, V. Patel, J. Wiek, S. M. Rassam, E. M. Kohner, “Vessel diameter changes during the cardiac cycle,” Eye 8, 97–103 (1994).
[CrossRef] [PubMed]

Rassam, S. M.

H. C. Chen, V. Patel, J. Wiek, S. M. Rassam, E. M. Kohner, “Vessel diameter changes during the cardiac cycle,” Eye 8, 97–103 (1994).
[CrossRef] [PubMed]

Riva, C. E.

J. E. Grunwald, A. J. Brucker, S. E. Grunwald, C. E. Riva, “Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 34, 66–71 (1993).

Schweitzer, D.

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

Sharrett, A. R.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Smith, M. H.

Stanton, A. V.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).

Thom, S. A.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).

Tielsch, J. M.

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Twersky, V.

Van Assendelft, O. W.

O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives (Thomas, Springfield, Ill.1970).

Vermeer, K. A.

K. A. Vermeer, F. M. Vos, H. G. Lemij, A. M. Vossepoel, “A model based method for retinal blood vessel detection,” Comp. Biol. Med. 34, 209–219 (2004).
[CrossRef]

Vos, F. M.

K. A. Vermeer, F. M. Vos, H. G. Lemij, A. M. Vossepoel, “A model based method for retinal blood vessel detection,” Comp. Biol. Med. 34, 209–219 (2004).
[CrossRef]

Vossepoel, A. M.

K. A. Vermeer, F. M. Vos, H. G. Lemij, A. M. Vossepoel, “A model based method for retinal blood vessel detection,” Comp. Biol. Med. 34, 209–219 (2004).
[CrossRef]

Wiek, J.

H. C. Chen, V. Patel, J. Wiek, S. M. Rassam, E. M. Kohner, “Vessel diameter changes during the cardiac cycle,” Eye 8, 97–103 (1994).
[CrossRef] [PubMed]

Witt, N.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).

Wong, T. Y.

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Br. J. Ophthalmol. (2)

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85, 74–79 (2001).

M. D. Knudtson, B. E. Klein, R. Klein, T. Y. Wong, L. D. Hubbard, K. E. Lee, S. M. Meuer, C. P. Bulla, “Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle,” Br. J. Ophthalmol. 88, 57–61 (2004).
[CrossRef]

Comp. Biol. Med. (1)

K. A. Vermeer, F. M. Vos, H. G. Lemij, A. M. Vossepoel, “A model based method for retinal blood vessel detection,” Comp. Biol. Med. 34, 209–219 (2004).
[CrossRef]

Curr. Eye. Res. (1)

M. J. Dumskyj, S. J. Aldington, C. J. Dore, E. M. Kohner, “The accurate assessment of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised fundus photography,” Curr. Eye. Res. 15, 625–632 (1996).
[CrossRef] [PubMed]

Eye (1)

H. C. Chen, V. Patel, J. Wiek, S. M. Rassam, E. M. Kohner, “Vessel diameter changes during the cardiac cycle,” Eye 8, 97–103 (1994).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

L. Gang, O. Chutatpe, S. M. Krishnan, “Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter,” IEEE Trans. Biomed. Eng. 49, 168–172 (2002).
[CrossRef] [PubMed]

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

S. Chaudhuri, S. Chatterjee, N. Katz, M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imaging 8, 263–269 (1989).
[CrossRef] [PubMed]

A. Hoover, V. Kouznetsova, M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Trans. Med. Imaging 19, 203–210 (2000).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

H. Heier, O. Brinchmann-Hansen, “Reliable measurements from fundus photographs in the presence of focusing errors,” Invest. Ophthalmol. Visual Sci. 30, 674–677 (1989).

J. B. Jonas, X. N. Nguyen, G. O. Naumann, “Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data,” Invest. Ophthalmol. Visual Sci. 30, 1599–1603 (1989).

J. E. Grunwald, A. J. Brucker, S. E. Grunwald, C. E. Riva, “Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 34, 66–71 (1993).

J. Opt. Soc. Am. (1)

Nat. Struct. Biol. (1)

W. A. Eaton, E. R. Henry, J. Hofrichter, A. Mozzarelli, “Is cooperative oxygen binding by hemoglobin really understood?” Nat. Struct. Biol. 6, 351–358 (1999).
[CrossRef] [PubMed]

Ophthalmology (1)

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities (ARIC) Study,” Ophthalmology 106, 2269–2280 (1999).
[CrossRef] [PubMed]

Surv. Ophthalmol. (1)

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Other (1)

O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives (Thomas, Springfield, Ill.1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the eye.

Fig. 2
Fig. 2

Illumination geometry. Light from a fiber-optic illuminator source (cone) illuminates a blood vessel (cylinder) from the side. The vessel casts a shadow on the RPE, with the shadow translated to the side. Backscattered light from the vessel, and light that has backscattered from shadowed and unshadowed regions of RPE and, in some cases, passed through the vessel (arrows), is collected by the camera system.

Fig. 3
Fig. 3

Schematic diagram of the optical imaging setup.

Fig. 4
Fig. 4

Moving a pixel across a cross section through an image to determine the feature diameter. (a) Original image, showing the segment of vessel to be analyzed. (b), (c) Cursor positioned on the bottom edge of the vessel. (d) (e) Cursor positioned on the top edge of the vessel.

Fig. 5
Fig. 5

Ronchi ruling segment (horizontal bars on left) placed above retina for analysis. (a) Original image. (b)–(e): Close-up of Ronchi ruling segments at (b) 440 nm, (c) 520 nm, (d) 600 nm, and (e) 680 nm.

Fig. 6
Fig. 6

Vein segment for analysis. (a) Original image. (b)–(e) Close-up of vein segments at (b) 440 nm, (c) 520 nm, (d) 600 nm, and (e) 680 nm. The vein segment at 440 nm clearly has a larger apparent diameter than at 520 or 680 nm.

Fig. 7
Fig. 7

Width of Ronchi ruling (Fig. 4) and diameter of vein segment (Fig. 5) as a function of wavelength. The nearly constant width for the Ronchi ruling indicates that the optical system has little chromatic aberration. The decrease in diameter for the vein segment is thus due to vessel effects.

Fig. 8
Fig. 8

Retinal image showing artery segment for analysis. (a) Original image. (b)–(d) Close-up of the artery as indicated by larger box in (a) for wavelengths (b) 440 nm (c) 520 nm, and (d) 620 nm. (e)–(g) Further close-up of the artery as indicated by the smaller box in (a) for wavelengths (e) 440 nm, (f) 520 nm, and (g) 620 nm.

Fig. 9
Fig. 9

Retinal image showing vein segment for analysis. (a) Original image. (b)–(d) Close-up of vein as indicated by larger box in (a) for wavelengths (b) 440 nm, (c) 520 nm, and (d) 620 nm. (e)–(g) Further close-up of artery as indicated by the smaller box in (a) for wavelengths (e) 440 nm, (f) 520 nm, and (g) 620 nm.

Fig. 10
Fig. 10

Width of artery segments (a) and vein segments (b) as a function of wavelength. A decrease in diameter is seen for all segments. Error bars representing ±2 pixel uncertainty are omitted for clarity.

Metrics