Abstract

We show that digital holography can be combined easily with optical coherence tomography approach. Varying the reference path length is the means used to acquire a series of holograms at different depths, providing after reconstruction images of slices at different depths in the specimen thanks to the short-coherence length of light source. A metallic object, covered by a 150-μm-thick onion cell, is imaged with high resolution. Applications in ophthalmology are shown: structures of the anterior eye, the cornea, and the iris, are studied on enucleated porcine eyes. Tomographic images of the iris border close to the pupil were obtained 165 μm underneath the eye surface.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, “Optical coherence tomography,” J. Biomed. 1, 157–173 (1996).
  3. W. Drexler, “Ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004).
    [CrossRef] [PubMed]
  4. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Topics Quantum Electron. 5, 1176–1184 (1999).
    [CrossRef]
  5. S. Bourquin, V. Monterosso, P. Seitz, R. P. Salathe, “Video-rate optical low-coherence reflectometry based on a linear smart detector array,” Opt. Lett. 25, 102–104 (2000).
    [CrossRef]
  6. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
    [CrossRef] [PubMed]
  7. L. Vabre, A. Dubois, A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
    [CrossRef]
  8. A. Dubois, L. Vabre, A. C. Boccara, E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
    [CrossRef] [PubMed]
  9. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
    [CrossRef] [PubMed]
  10. M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, M. R. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett. 75, 1363–1365 (1999).
    [CrossRef]
  11. E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” Journal of Optics-Nouvelle Revue D’Optique 28, 260–264 (1997).
  12. G. Indebetouw, P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212–214 (2000).
    [CrossRef]
  13. G. Pedrini, S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
    [CrossRef]
  14. G. Pedrini, H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489–4496 (2002).
    [CrossRef] [PubMed]
  15. E. Cuche, P. Marquet, C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]
  16. E. Cuche, P. Marquet, C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69 (2000).
    [CrossRef]
  17. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  18. E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  19. O. Camber, C. Rehbinder, T. Nikkila, P. Edman, “Morphology of the pig cornea in normal conditions and after incubation in a perfusion apparatus,” Acta Vet. Scand. 28, 127–134 (1987).
    [PubMed]
  20. K. Ludwig, E. Wegscheider, J. P. Hoops, A. Kampik, “In vivo imaging of the human zonular apparatus with high-resolution ultrasound biomicroscopy,” Arch. Ophtalmol. 237, 361–371 (1999).
  21. C. J. Pavlin, F. S. Foster, “High resolution ultrasound,” in Cornea, J. H. Krachmer, M. J. Mannis, E. J. Holland, eds. (Mosby, St. Louis, 1996), Chap. 21.

2004 (2)

2002 (3)

2001 (1)

G. Pedrini, S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

2000 (4)

1999 (5)

E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
[CrossRef]

E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

K. Ludwig, E. Wegscheider, J. P. Hoops, A. Kampik, “In vivo imaging of the human zonular apparatus with high-resolution ultrasound biomicroscopy,” Arch. Ophtalmol. 237, 361–371 (1999).

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Topics Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, M. R. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett. 75, 1363–1365 (1999).
[CrossRef]

1997 (1)

E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” Journal of Optics-Nouvelle Revue D’Optique 28, 260–264 (1997).

1996 (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. 1, 157–173 (1996).

1995 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1987 (1)

O. Camber, C. Rehbinder, T. Nikkila, P. Edman, “Morphology of the pig cornea in normal conditions and after incubation in a perfusion apparatus,” Acta Vet. Scand. 28, 127–134 (1987).
[PubMed]

Barry, N. P.

Beaurepaire, E.

Bevilacqua, F.

Boccara, A. C.

Boccara, C.

Bourquin, S.

Camber, O.

O. Camber, C. Rehbinder, T. Nikkila, P. Edman, “Morphology of the pig cornea in normal conditions and after incubation in a perfusion apparatus,” Acta Vet. Scand. 28, 127–134 (1987).
[PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cuche, E.

Dainty, J. C.

Depeursinge, C.

Drexler, W.

W. Drexler, “Ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004).
[CrossRef] [PubMed]

Dubois, A.

Edman, P.

O. Camber, C. Rehbinder, T. Nikkila, P. Edman, “Morphology of the pig cornea in normal conditions and after incubation in a perfusion apparatus,” Acta Vet. Scand. 28, 127–134 (1987).
[PubMed]

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. 1, 157–173 (1996).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Foster, F. S.

C. J. Pavlin, F. S. Foster, “High resolution ultrasound,” in Cornea, J. H. Krachmer, M. J. Mannis, E. J. Holland, eds. (Mosby, St. Louis, 1996), Chap. 21.

French, P. M. W.

M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, M. R. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett. 75, 1363–1365 (1999).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grieve, K.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hoops, J. P.

K. Ludwig, E. Wegscheider, J. P. Hoops, A. Kampik, “In vivo imaging of the human zonular apparatus with high-resolution ultrasound biomicroscopy,” Arch. Ophtalmol. 237, 361–371 (1999).

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hyde, S. C. W.

Indebetouw, G.

Jackson, D. A.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Topics Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Jones, R.

M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, M. R. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett. 75, 1363–1365 (1999).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Kampik, A.

K. Ludwig, E. Wegscheider, J. P. Hoops, A. Kampik, “In vivo imaging of the human zonular apparatus with high-resolution ultrasound biomicroscopy,” Arch. Ophtalmol. 237, 361–371 (1999).

Klein, M. B.

Klysubun, P.

Lecaque, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ludwig, K.

K. Ludwig, E. Wegscheider, J. P. Hoops, A. Kampik, “In vivo imaging of the human zonular apparatus with high-resolution ultrasound biomicroscopy,” Arch. Ophtalmol. 237, 361–371 (1999).

Marquet, P.

Melloch, M. R.

M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, M. R. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett. 75, 1363–1365 (1999).
[CrossRef]

Moneron, G.

Monterosso, V.

Nikkila, T.

O. Camber, C. Rehbinder, T. Nikkila, P. Edman, “Morphology of the pig cornea in normal conditions and after incubation in a perfusion apparatus,” Acta Vet. Scand. 28, 127–134 (1987).
[PubMed]

Nolte, D. D.

M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, M. R. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett. 75, 1363–1365 (1999).
[CrossRef]

Pavlin, C. J.

C. J. Pavlin, F. S. Foster, “High resolution ultrasound,” in Cornea, J. H. Krachmer, M. J. Mannis, E. J. Holland, eds. (Mosby, St. Louis, 1996), Chap. 21.

Pedrini, G.

Podoleanu, A. G.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Topics Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Poscio, P.

E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” Journal of Optics-Nouvelle Revue D’Optique 28, 260–264 (1997).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rehbinder, C.

O. Camber, C. Rehbinder, T. Nikkila, P. Edman, “Morphology of the pig cornea in normal conditions and after incubation in a perfusion apparatus,” Acta Vet. Scand. 28, 127–134 (1987).
[PubMed]

Rogers, J. A.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Topics Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Salathe, R. P.

Schedin, S.

G. Pedrini, S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seitz, P.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tiziani, H. J.

Tziraki, M.

M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, M. R. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett. 75, 1363–1365 (1999).
[CrossRef]

Vabre, L.

Wechsler, B. A.

Wegscheider, E.

K. Ludwig, E. Wegscheider, J. P. Hoops, A. Kampik, “In vivo imaging of the human zonular apparatus with high-resolution ultrasound biomicroscopy,” Arch. Ophtalmol. 237, 361–371 (1999).

Acta Vet. Scand. (1)

O. Camber, C. Rehbinder, T. Nikkila, P. Edman, “Morphology of the pig cornea in normal conditions and after incubation in a perfusion apparatus,” Acta Vet. Scand. 28, 127–134 (1987).
[PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, M. R. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett. 75, 1363–1365 (1999).
[CrossRef]

Arch. Ophtalmol. (1)

K. Ludwig, E. Wegscheider, J. P. Hoops, A. Kampik, “In vivo imaging of the human zonular apparatus with high-resolution ultrasound biomicroscopy,” Arch. Ophtalmol. 237, 361–371 (1999).

IEEE J. Sel. Topics Quantum Electron. (1)

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Topics Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

J. Biomed. (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. 1, 157–173 (1996).

J. Biomed. Opt. (1)

W. Drexler, “Ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004).
[CrossRef] [PubMed]

Journal of Optics-Nouvelle Revue D’Optique (1)

E. Cuche, P. Poscio, C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” Journal of Optics-Nouvelle Revue D’Optique 28, 260–264 (1997).

Opt. Commun. (1)

E. Cuche, P. Marquet, C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69 (2000).
[CrossRef]

Opt. Lett. (5)

Optik (1)

G. Pedrini, S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

C. J. Pavlin, F. S. Foster, “High resolution ultrasound,” in Cornea, J. H. Krachmer, M. J. Mannis, E. J. Holland, eds. (Mosby, St. Louis, 1996), Chap. 21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the optical system used to achieve OCT with a short-coherence digital holographic microscope. B.E., beam expander; M.O., microscope objective.

Fig. 2
Fig. 2

En face tomographic images of the complex object composed of a USAF test target (part of it containing the number “2”) covered by an onion cell layer. These images have been obtained by the reconstructions of holograms taken with coherence gates at the level of the surface of the onion cells and at the level of the USAF test target. (a) Sketch of the sample. (b) En face image from the hologram taken with the coherence gate at the surface. (c) En face image from the hologram recorded 150 μm below the surface, at the level of the USAF test target.

Fig. 3
Fig. 3

Sketches representing (a) the eye and (b) the cornea with its fine structure. (c) Backscattered intensity, obtained by scanning through the cornea. The double peak corresponds to the thick epithelium. The single peak to the right corresponds the endothelial monocellular layer. (d) Cross-sectional image of the whole cornea. The two interfaces of the epithelium are visible at the top of the image, and the endothelial layer is visible at the bottom. (e) En face image of porcine corneal epithelium in situ. This tomographic image yields details at the cellular level: image of nuclei and cytoplasm. (The upper right and the lower left parts of the image contain no information because of the convex form of the cornea).

Fig. 4
Fig. 4

Tomographic images of the porcine iris, at the pupil border. Image (i) is the en face image taken 50 μm underneath the iris surface. Image (ii) is the en face image taken 165 μm underneath the surface. Images a–e and A–D represent cross-sectional images taken through the iris at locations given by the letters sketched in image (i). The anterior part of the iris is at the top for images a–e and to the left for images A–D.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I H ( x , y ) = O O * + R R * zero order + O * R real image + R O * virtual image ,
I H ( k , l ) = k Δ x - Δ x / 2 k Δ x + Δ x / 2 l Δ y - Δ y / 2 l Δ y + Δ y / 2 I H ( x , y ) d x d y ,
R D ( k , l ) = exp [ i ( k x k Δ x + k y l Δ y ) ] ,
Ψ ( m , n ) = A Φ ( m , n ) exp [ i π λ d ( m 2 Δ ξ 2 + n 2 Δ η 2 ) ] × FFT { R D ( k , l ) I H ( k , l ) exp [ i π λ d ( k 2 Δ x 2 + l 2 Δ η 2 ) ] } m , n ,
Ψ = R D R * O ,             with R D ( k , l ) = exp [ i ( k x k Δ x + k y l Δ y ) ] ,

Metrics