Abstract

Fourier-domain holography (FDH) has several advantages over image-domain holography for optical coherence imaging of tissue. Writing the hologram in the Fourier plane significantly reduces background arising from reference light scattered from the photorefractive holographic film. The ability to use FDH is enhanced by the use of a diffuse target, such as scattering tissue, rather than specular targets, because the broader angular distribution from diffuse targets is transformed into a relatively uniform distribution in the Fourier plane. We demonstrate significantly improved performance for Fourier-domain optical coherence imaging on rat osteogenic sarcoma tumor spheroids and mouse eye. The sensitivity is documented at −95 dB.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 157–160 (1987).
    [CrossRef]
  2. E. A. Swanson, D. Haung, M. R. Hee, J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [CrossRef] [PubMed]
  3. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
    [CrossRef] [PubMed]
  4. S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
    [CrossRef]
  5. R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
    [CrossRef]
  6. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
    [CrossRef]
  7. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
    [CrossRef]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  9. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993).
    [CrossRef] [PubMed]
  10. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  11. Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
    [CrossRef]
  12. C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
    [CrossRef]
  13. P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
    [CrossRef]
  14. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43, 4862–4873 (2004).
    [CrossRef] [PubMed]
  15. P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, D. D. Nolte, “Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue,” Opt. Lett. 29, 68–70 (2004).
    [CrossRef] [PubMed]
  16. E. N. Leith, J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964).
    [CrossRef]
  17. G. W. Stroke, D. Brumm, A. Funkhouser, “Three-dimensional holography with “lensless” Fourier-transform holograms and coarse p/n Polaroid film,” J. Opt. Soc. Am. 55, 1327–1328 (1965).
    [CrossRef]
  18. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973–4978 (1992).
    [CrossRef] [PubMed]
  19. R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
    [CrossRef]
  20. K. Jeong, L. Peng, D. D. Nolte, M. R. Melloch, “Fourier-domain holography in photorefractive quantum-well films,” Appl. Opt. 43, 3802–3811 (2004).
    [CrossRef] [PubMed]
  21. D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, A. M. Glass, “Resonant photodiffractive effect in semi-insulating multiple quantum wells,” J. Opt. Soc. Am. B 7, 2217–2225 (1990).
    [CrossRef]
  22. D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
    [CrossRef]
  23. D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
    [CrossRef]

2004

2003

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

2001

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

2000

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

1999

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

1998

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

1996

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

1995

1993

1992

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990

1987

R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 157–160 (1987).
[CrossRef]

1965

1964

Ansari, Z.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

Barry, N. P.

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Boyer, K.

Brumm, D.

Carr, S.

R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 157–160 (1987).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cullen, D.

Dainty, J. C.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Davies, D. E. N.

R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 157–160 (1987).
[CrossRef]

Doran, G. E.

Dunsby, C.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Dunsby, C. W.

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

French, P. M. W.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43, 4862–4873 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Fujimoto, J. G.

Funkhouser, A.

Glass, A. M.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, Y.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

Haddad, W. S.

Haung, D.

Headley, W.

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

Hee, M. R.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hyde, S. C. W.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Itoh, M.

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

Izatt, J. A.

Jacobson, J. M.

Jeong, K.

Jones, R.

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Klein, M. B.

Knox, W. H.

Kwolek, K. M.

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

Leith, E. N.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Longworth, J. W.

Lynn, M. J.

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

McPherson, A.

Melloch, M. R.

K. Jeong, L. Peng, D. D. Nolte, M. R. Melloch, “Fourier-domain holography in photorefractive quantum-well films,” Appl. Opt. 43, 3802–3811 (2004).
[CrossRef] [PubMed]

P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, D. D. Nolte, “Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue,” Opt. Lett. 29, 68–70 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43, 4862–4873 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
[CrossRef]

Mustata, M.

Nolte, D. D.

P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, D. D. Nolte, “Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue,” Opt. Lett. 29, 68–70 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43, 4862–4873 (2004).
[CrossRef] [PubMed]

K. Jeong, L. Peng, D. D. Nolte, M. R. Melloch, “Fourier-domain holography in photorefractive quantum-well films,” Appl. Opt. 43, 3802–3811 (2004).
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, A. M. Glass, “Resonant photodiffractive effect in semi-insulating multiple quantum wells,” J. Opt. Soc. Am. B 7, 2217–2225 (1990).
[CrossRef]

D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
[CrossRef]

Olson, D. H.

Parsons-Karavassilis, D.

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

Peng, L.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rhodes, C. K.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Siegel, J.

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

Solem, J. C.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stroke, G. W.

Swanson, E. A.

Turek, J. J.

Tziraki, M.

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

Upatnieks, J.

Wechsler, B. A.

Youngquist, R. C.

R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 157–160 (1987).
[CrossRef]

Yu, P.

P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, D. D. Nolte, “Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue,” Opt. Lett. 29, 68–70 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43, 4862–4873 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

Appl. Phys. Lett.

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

J. Appl. Phys.

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Commun.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical setup for FDH with two subsystems. Ps, Pr, powers; Is, Ir, intensities; Ws, Wr, beam radii; BS, beam splitters; L11, L12, L21, L22, lenses; V, voltage; OP1, OP2, object planes; FP2, Fourier plane; IP1, IP2, image planes.

Fig. 2
Fig. 2

Experimental setup for FDH; PBSs, polarizing beam splitter; BS, beam splitter; M’s, mirrors; L1–L7, lenses; λ/2, half-wave plate; λ/4, quarter-wave plate; IP, image plane; V, voltage.

Fig. 3
Fig. 3

Background-subtracted holographic images of the USAF test chart obtained with the mode-locked laser (a) under cw operation and (b) under mode-locked operation. Images are obtained through the PRQW device with a 5-mm window size and the lens L5 with a 10-cm focal length by use of a vibrating diffuser.

Fig. 4
Fig. 4

XY cross section selected per every third frame from fly-through images of a 400-μm-diameter rat osteogenic tumor spheroid. The gray scale is on a logarithmic scale. The petri dish reflection appears in frame 66. Frame 39 is the approximate midsection.

Fig. 5
Fig. 5

YZ cross section selected per 13th pixel from fly-through images of the tumor spheroid in Fig. 4. The gray scale is on a logarithmic scale. The petri dish reflection appears on the right of each frame. Frame 136 is the approximate midsection.

Fig. 6
Fig. 6

Volumetric rendering reconstructed by computer from fly-through images of a 500-μm-diameter tumor spheroids. The light is incident from the top, and the petri dish reflection is at the bottom. The shadow of the tumor spheroid is evident on the petri dish. The transparency threshold of −84, −79, −74, and −69 dB is adjusted for (a), (b), (c), and (d), respectively, to see the different features inside the tumor.

Fig. 7
Fig. 7

Pseudo-A scans selected from fly-through images of the tumor spheroid in Fig. 4. The petri dish reflection is at frame 66, and the top of the tumor spheroid is at frame 12. The noise floor is at −95 dB, and the dynamic range is approximately 40 dB. The penetration depth of 0.8 mm is acquired from the dashed-line slope of 66.5 dB/mm.

Fig. 8
Fig. 8

Average intensities of the holographic features as a function of radius from four different-size tumors. Feature intensities near the center are stronger, and they decrease to small values at the tumor surface, which is consistent with decreasing necrosis density from the center to the surface.

Fig. 9
Fig. 9

Cross-correlation functions from two consecutive fly-throughs of the same cross-linked tumor and the same healthy tumor. Cross-correlation function for random tumor was obtained from fly-throughs of two random tumors.

Fig. 10
Fig. 10

Midsection extracted from the holographic fly-through images of a mouse eye. The anterior chamber cornea-iridial angle is clearly observed.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I s O 1 I s 0 d R ( z ) exp ( - 2 μ z ) d z B s I s ,
I c s O 1 I s R ( z ) l c exp ( - 2 μ z ) B c I s ,
η c = 2 [ 1 - ( 1 - sin 2 θ c ) 1 / 2 ] ( s NA ) 2
I s F 2 = 2 P s O 2 / ( π W s F 2 2 ) ,
I s F 2 = B s M 1 2 W s 2 I s f 21 2 .
I d F 2 = η p m 2 I r = η p 4 I c s F 2 I r 2 ( I r + I s F 2 ) 2 ,
I d I 2 = I d F 2 W d F 2 2 / W d I 2 2 ,
I d I 2 = η p B c B s ( NA ) 2 ( f 21 ) 2 ( M 1 ) 4 ( M 2 ) 2 ( W s ) 2 I r ,
I b I 2 η b A d I r / π ( f 22 ) 2
S / B = π η p η b A d B c B s ( NA ) 2 ( f 21 ) 4 ( M 1 ) 4 ( W s ) 2 ,
NA = M 1 W PRQW / ( π f 21 )
R s f 21 λ / ( M 1 W PRQW ) ,
S / B = [ R ( z ) exp ( - 2 μ z ) B s ] [ l c ( W s ) 2 ] [ η p η b A d ] × [ ( W PRQW ) 2 ( f 21 ) 2 ( M 1 ) 2 ] .

Metrics