Abstract

A new lightweight near-infrared tunable diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode spectrometer) was developed for flights to the stratosphere as an additional in situ sensor on existing balloonborne payloads. Free-air absorption measurements in the near infrared are made with an open-path Herriott cell with new design features. It offers two individual absorption path lengths optimized for CH4 with 74 m (136 pass) and H2O with 36 m (66 pass). New electronic features include a real-time gain control loop that provides an autocalibration function. In flight-ready configuration the instrument mass is approximately 20 kg, including batteries. It successfully measured stratospheric CH4 and H2O profiles on high-altitude balloons on four balloon campaigns (Environmental Satellite validation) between October 2001 and June 2003. On these first flights, in situ spectra were recorded from ground level to 32,000-m altitude with a sensitivity of 0.1 ppm [(parts per million), ground] to 0.4 ppm (32,000 m) for methane and 0.15–0.5 ppm for water.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. SPARC (Stratospheric Processes and Their Role in Climate), Assessment of upper tropospheric and stratospheric water vapor, WCRP-113, WMO/TD Mo. 1043, (2000).
  2. IPCC “Atmospheric greenhouse gases,” in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, Cambridge, UK, 2001), Chap 4, p. 248.
  3. E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, “Continuing decline in the growth rate of the atmospheric methane burden,” Nature 393, 447–450 (1998).
    [CrossRef]
  4. G. Durry, G. Megie, “Atmospheric CH4and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements,” Appl. Opt. 38, 7342–7354 (1999).
    [CrossRef]
  5. G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).
  6. P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996).
    [CrossRef]
  7. David S. Bomse, Alan C. Stanton, Joel A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  8. R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161–19172 (1998).
    [CrossRef]
  9. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998).
    [CrossRef]
  10. J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
    [CrossRef]
  11. A. W. Brewer, B. Cwilong, G. M. B. Dobson, “Measurement of absolute humidity in extremely dry air,” Proc. Phys. Soc. London 60, 52–70 (1946).
    [CrossRef]
  12. M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
    [CrossRef]
  13. M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999).
    [CrossRef]
  14. E. J. Hintsa, E. M. Weinstock, J. G. Anderson, R. D. May, D. F. Hurst, “On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer,” J. Geophys. Res. 104, 8183–8189 (1999).
    [CrossRef]
  15. Buck Research Inc. Specifications, Model CR-2 Cryocooled Hygrometer (BUCK RESEARCH INSTRUMENTS, LLC, Boulder, Colo., 80301).
  16. U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987).
    [CrossRef]
  17. H. Teichert, T. Fernholz, V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
    [CrossRef] [PubMed]
  18. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
    [CrossRef]
  19. D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
    [CrossRef]
  20. D. R. Herriott, H. Kogelnik, R. Kompfer, “Off-axis path in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  21. C. Giesemann, “Entwicklung und Einsatz eines Diodenlaser-spektrometers zum quantitativen in-situ-Nachweis von Methan und Wasser in der Stratosphäre,” dissertation (University of Heidelberg, Heidelberg, Germany, 2003), in German.
  22. W. Gurlit, Diodenlaser für spektroskopische Anwendungen: Neue Aspekte für die Konstruktion hochempfindlicher Feldinstrumente (Cuvillier Verlag, Göttingen, 1997), in German.
  23. R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
    [CrossRef]
  24. G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef]
  25. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  26. M. Barabanov, “A Linux-based real-time operating system,” M.S. thesis (New Mexico Institute of Mining and Technology, Socorro, N.Mex, 1997).
  27. W. Demtröder, Laserspektroskopie (Springer-Verlag, Berlin, 1991).
    [CrossRef]
  28. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  29. L. Moretti, A. Sasso, L. Gianfrani, R. Ciurylo, “Collisional-broadened and Dicke narrowed lineshapes of H216O and H218O transitions at 1.39 μm,” J. Mol. Spectrosc. 205, 20–27 (2001).
    [CrossRef] [PubMed]
  30. J. S. Margolis, “Measured line positions and strengths of methane between 5500 and 6180 cm−1,” Appl. Opt. 27, 4038–4051 (1988).
    [CrossRef] [PubMed]
  31. B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, “Diode laser spectroscopy of H2O in the 7165–7185 cm−1range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 75, 481–505 (2002).
    [CrossRef]
  32. R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm−1,” Appl. Opt. 33, 4851–4867 (1994).
    [CrossRef] [PubMed]
  33. D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
    [CrossRef]

2003 (1)

2002 (1)

B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, “Diode laser spectroscopy of H2O in the 7165–7185 cm−1range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 75, 481–505 (2002).
[CrossRef]

2001 (1)

L. Moretti, A. Sasso, L. Gianfrani, R. Ciurylo, “Collisional-broadened and Dicke narrowed lineshapes of H216O and H218O transitions at 1.39 μm,” J. Mol. Spectrosc. 205, 20–27 (2001).
[CrossRef] [PubMed]

2000 (1)

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

1999 (5)

G. Durry, G. Megie, “Atmospheric CH4and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements,” Appl. Opt. 38, 7342–7354 (1999).
[CrossRef]

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999).
[CrossRef]

E. J. Hintsa, E. M. Weinstock, J. G. Anderson, R. D. May, D. F. Hurst, “On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer,” J. Geophys. Res. 104, 8183–8189 (1999).
[CrossRef]

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

1998 (4)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, “Continuing decline in the growth rate of the atmospheric methane burden,” Nature 393, 447–450 (1998).
[CrossRef]

R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161–19172 (1998).
[CrossRef]

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998).
[CrossRef]

1996 (1)

P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996).
[CrossRef]

1994 (2)

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm−1,” Appl. Opt. 33, 4851–4867 (1994).
[CrossRef] [PubMed]

1993 (1)

R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
[CrossRef]

1992 (1)

1988 (1)

1987 (1)

U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987).
[CrossRef]

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

1980 (1)

1965 (1)

1964 (1)

1946 (1)

A. W. Brewer, B. Cwilong, G. M. B. Dobson, “Measurement of absolute humidity in extremely dry air,” Proc. Phys. Soc. London 60, 52–70 (1946).
[CrossRef]

Afchine, A.

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

Allen, M. G.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998).
[CrossRef]

Anderson, J. G.

E. J. Hintsa, E. M. Weinstock, J. G. Anderson, R. D. May, D. F. Hurst, “On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer,” J. Geophys. Res. 104, 8183–8189 (1999).
[CrossRef]

Barabanov, M.

M. Barabanov, “A Linux-based real-time operating system,” M.S. thesis (New Mexico Institute of Mining and Technology, Socorro, N.Mex, 1997).

Barrick, J. D. W.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef]

Bomse, David S.

Borchers, R.

U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987).
[CrossRef]

Brewer, A. W.

A. W. Brewer, B. Cwilong, G. M. B. Dobson, “Measurement of absolute humidity in extremely dry air,” Proc. Phys. Soc. London 60, 52–70 (1946).
[CrossRef]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ciurylo, R.

L. Moretti, A. Sasso, L. Gianfrani, R. Ciurylo, “Collisional-broadened and Dicke narrowed lineshapes of H216O and H218O transitions at 1.39 μm,” J. Mol. Spectrosc. 205, 20–27 (2001).
[CrossRef] [PubMed]

Cwilong, B.

A. W. Brewer, B. Cwilong, G. M. B. Dobson, “Measurement of absolute humidity in extremely dry air,” Proc. Phys. Soc. London 60, 52–70 (1946).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Demtröder, W.

W. Demtröder, Laserspektroskopie (Springer-Verlag, Berlin, 1991).
[CrossRef]

Dlugokencky, E. J.

E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, “Continuing decline in the growth rate of the atmospheric methane burden,” Nature 393, 447–450 (1998).
[CrossRef]

Dobson, G. M. B.

A. W. Brewer, B. Cwilong, G. M. B. Dobson, “Measurement of absolute humidity in extremely dry air,” Proc. Phys. Soc. London 60, 52–70 (1946).
[CrossRef]

Durry, G.

B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, “Diode laser spectroscopy of H2O in the 7165–7185 cm−1range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 75, 481–505 (2002).
[CrossRef]

G. Durry, G. Megie, “Atmospheric CH4and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements,” Appl. Opt. 38, 7342–7354 (1999).
[CrossRef]

Dutton, G. S.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

Ebert, V.

H. Teichert, T. Fernholz, V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Eicke, N.

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

Elkins, J. W.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

Engel, A.

M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999).
[CrossRef]

Fabian, P.

U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987).
[CrossRef]

Fernholz, T.

H. Teichert, T. Fernholz, V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gerhard, M.-T.

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

Gianfrani, L.

L. Moretti, A. Sasso, L. Gianfrani, R. Ciurylo, “Collisional-broadened and Dicke narrowed lineshapes of H216O and H218O transitions at 1.39 μm,” J. Mol. Spectrosc. 205, 20–27 (2001).
[CrossRef] [PubMed]

Giesemann, C.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

C. Giesemann, “Entwicklung und Einsatz eines Diodenlaser-spektrometers zum quantitativen in-situ-Nachweis von Methan und Wasser in der Stratosphäre,” dissertation (University of Heidelberg, Heidelberg, Germany, 2003), in German.

Goffinont-Taupin, F.

G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gurlit, W.

W. Gurlit, Diodenlaser für spektroskopische Anwendungen: Neue Aspekte für die Konstruktion hochempfindlicher Feldinstrumente (Cuvillier Verlag, Göttingen, 1997), in German.

Herman, R. L.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

Herriott, D. R.

Hintsa, E. J.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

E. J. Hintsa, E. M. Weinstock, J. G. Anderson, R. D. May, D. F. Hurst, “On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer,” J. Geophys. Res. 104, 8183–8189 (1999).
[CrossRef]

Hovde, D. C.

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

Hurst, D. F.

E. J. Hintsa, E. M. Weinstock, J. G. Anderson, R. D. May, D. F. Hurst, “On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer,” J. Geophys. Res. 104, 8183–8189 (1999).
[CrossRef]

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

Jaritz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kessler, W. J.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998).
[CrossRef]

Klein, E.

U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987).
[CrossRef]

Kogelnik, H.

Kompfer, R.

Kulessa, G.

U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987).
[CrossRef]

Lang, P. M.

E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, “Continuing decline in the growth rate of the atmospheric methane burden,” Nature 393, 447–450 (1998).
[CrossRef]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Magill, J. C.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Margolis, J. S.

Masarie, K. A.

E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, “Continuing decline in the growth rate of the atmospheric methane burden,” Nature 393, 447–450 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

May, R. D.

E. J. Hintsa, E. M. Weinstock, J. G. Anderson, R. D. May, D. F. Hurst, “On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer,” J. Geophys. Res. 104, 8183–8189 (1999).
[CrossRef]

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161–19172 (1998).
[CrossRef]

R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McKenna, D. S.

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999).
[CrossRef]

Megie, G.

Moore, F. L.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

Moreau, G.

G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).

Moretti, L.

L. Moretti, A. Sasso, L. Gianfrani, R. Ciurylo, “Collisional-broadened and Dicke narrowed lineshapes of H216O and H218O transitions at 1.39 μm,” J. Mol. Spectrosc. 205, 20–27 (2001).
[CrossRef] [PubMed]

Mörschel, U.

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

Moyer, E. J.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Parvitte, B.

B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, “Diode laser spectroscopy of H2O in the 7165–7185 cm−1range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 75, 481–505 (2002).
[CrossRef]

Payan, S.

G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Pirre, M.

G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).

Pitz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

Pouchet, I.

B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, “Diode laser spectroscopy of H2O in the 7165–7185 cm−1range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 75, 481–505 (2002).
[CrossRef]

Ramaroson, R.

G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Robert, C.

G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).

Romashkin, P. A.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

Röth, E.-P.

U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sasso, A.

L. Moretti, A. Sasso, L. Gianfrani, R. Ciurylo, “Collisional-broadened and Dicke narrowed lineshapes of H216O and H218O transitions at 1.39 μm,” J. Mol. Spectrosc. 205, 20–27 (2001).
[CrossRef] [PubMed]

Schiller, C.

M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999).
[CrossRef]

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

Schmidt, U.

M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999).
[CrossRef]

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Schulte, H. J.

Scott, D. C.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

Silver, J. A.

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

Silver, Joel A.

Sonnenfroh, D. M.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998).
[CrossRef]

Stanton, Alan C.

Tan, V.

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

Tans, P. P.

E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, “Continuing decline in the growth rate of the atmospheric methane burden,” Nature 393, 447–450 (1998).
[CrossRef]

Teichert, H.

H. Teichert, T. Fernholz, V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

Toth, R. A.

Tuitjer, F.

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

Upschulte, B. L.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wamsley, P. R.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webster, C. R.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
[CrossRef]

Weinstock, E. M.

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

E. J. Hintsa, E. M. Weinstock, J. G. Anderson, R. D. May, D. F. Hurst, “On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer,” J. Geophys. Res. 104, 8183–8189 (1999).
[CrossRef]

Werle, P.

P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996).
[CrossRef]

Wolfrum, J.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

Woyke, T.

M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999).
[CrossRef]

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Zéninari, V.

B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, “Diode laser spectroscopy of H2O in the 7165–7185 cm−1range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 75, 481–505 (2002).
[CrossRef]

Zöger, M.

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998).
[CrossRef]

J. Geophys. Res. (5)

M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999).
[CrossRef]

M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999).
[CrossRef]

E. J. Hintsa, E. M. Weinstock, J. G. Anderson, R. D. May, D. F. Hurst, “On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer,” J. Geophys. Res. 104, 8183–8189 (1999).
[CrossRef]

R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161–19172 (1998).
[CrossRef]

D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999).
[CrossRef]

J. Mol. Spectrosc. (1)

L. Moretti, A. Sasso, L. Gianfrani, R. Ciurylo, “Collisional-broadened and Dicke narrowed lineshapes of H216O and H218O transitions at 1.39 μm,” J. Mol. Spectrosc. 205, 20–27 (2001).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transfer (3)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, “Diode laser spectroscopy of H2O in the 7165–7185 cm−1range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 75, 481–505 (2002).
[CrossRef]

R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
[CrossRef]

Nature (1)

E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, “Continuing decline in the growth rate of the atmospheric methane burden,” Nature 393, 447–450 (1998).
[CrossRef]

Opt. Lett. (1)

Planet. Space Sci. (1)

U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987).
[CrossRef]

Proc. Combust. Inst. (1)

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

Proc. Phys. Soc. London (1)

A. W. Brewer, B. Cwilong, G. M. B. Dobson, “Measurement of absolute humidity in extremely dry air,” Proc. Phys. Soc. London 60, 52–70 (1946).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

Spectrochim. Acta Part A (1)

P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996).
[CrossRef]

Other (8)

G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).

SPARC (Stratospheric Processes and Their Role in Climate), Assessment of upper tropospheric and stratospheric water vapor, WCRP-113, WMO/TD Mo. 1043, (2000).

IPCC “Atmospheric greenhouse gases,” in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, Cambridge, UK, 2001), Chap 4, p. 248.

Buck Research Inc. Specifications, Model CR-2 Cryocooled Hygrometer (BUCK RESEARCH INSTRUMENTS, LLC, Boulder, Colo., 80301).

C. Giesemann, “Entwicklung und Einsatz eines Diodenlaser-spektrometers zum quantitativen in-situ-Nachweis von Methan und Wasser in der Stratosphäre,” dissertation (University of Heidelberg, Heidelberg, Germany, 2003), in German.

W. Gurlit, Diodenlaser für spektroskopische Anwendungen: Neue Aspekte für die Konstruktion hochempfindlicher Feldinstrumente (Cuvillier Verlag, Göttingen, 1997), in German.

M. Barabanov, “A Linux-based real-time operating system,” M.S. thesis (New Mexico Institute of Mining and Technology, Socorro, N.Mex, 1997).

W. Demtröder, Laserspektroskopie (Springer-Verlag, Berlin, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

TDL-Spectrometer with electronic box before integration into the TRIPLE gondola. Including all packaging and the necessary power supply by batteries, the total weight is less than 25 kg. To permit optimum contamination-free flow of air through the cell, it is installed horizontally in the gondola. An additional advantage is that with this installation, protective covers (with the additional risk of opening by telecommand) to avoid contamination of the mirrors during ascent in the troposphere are not needed.

Fig. 2
Fig. 2

All laser, detector, and beam-steering components are installed inside the compact optical head, which also contains the heatable reference cells. From each of the two collimated laser beams, two low-intensity reflections are coupled out by a beam splitter. These low-intensity beams are directed to the reference cell (used for the line lock) and to the I0 (background) detector. The main beam is brought into the Herriot cell (Z direction in this figure) by a folding mirror. The entire optical unit has a mass of only 6.6 Kg.

Fig. 3
Fig. 3

Spot pattern on the Herriott cell’s back mirror, imaged with an IR-sensitive vidicon camera. The outer pattern with the closer spacing belongs to the laser for methane; the inner pattern with the wider spacing is the pattern of the water vapor absorption path.

Fig. 4
Fig. 4

Section of thermal shift compensation. Misalignment of the Herriott cell by thermal shift in the operating range from +40° to −60° is avoided with this compensation mechanism. Remaining shift of the invar tubes, which form the structure of the cell, is compensated by small bolts from aluminum, shifting the mirror to the opposite direction. Thermal expansion coefficients of the two materials have to be inversely proportional to the length of the elements.

Fig. 5
Fig. 5

Ready for launch from Esrange (Kiruna, 67 °N) in March 2003. The protective birdcage made from lightweight bicycle parts was added to the Herriott cell after it had suffered serious structural damage during a hard landing in southern France on a previous campaign in Fall 2002. It also helps to better distribute the mechanical load on the Herriott cell during launch and flight.

Fig. 6
Fig. 6

Signal flow in autocalibration scheme. Both background and absorption signal are scaled to a fixed average value of 1230 mV, but the reaction time for gain changes is 3 orders of magnitude slower than the scan frequency. Thus, all information in the signals is fully preserved, but slower effects caused by possible shift of optical transmission or by contamination of optical parts are completely compensated by the AGC. As a result, the absorption signal is autocalibrated. For details see text.

Fig. 7
Fig. 7

Typical observed spectra at a low pressure of 50 hPa for water vapor (above) and methane (below). Absorption path length is 36 m (66 pass) for water and 74 m (136 pass) for methane. Temporal resolution (averaging time) at middle to high altitudes like shown here is typically 1.5 to 10 s. The fit residuals have been magnified by a factor of 5 in the plots. The minimum detectable absorption for methane is limited by optical fringes in the Herriott cell.

Fig. 8
Fig. 8

Methane and water vapor profiles from balloonborne TDL measurement (France, Fall 2002). Methane is plotted here as 2(CH4) to illustrate the concept of the potential hydrogen 2 (CH4) + H2O. Time and place of the measurement were coordinated with an overpass of ENVISAT, to use the CHILD measurement for validation of the SCIAMACHY spectrometer.

Tables (2)

Tables Icon

Table 1 Laser Diode Technical Data

Tables Icon

Table 2 Spectroscopic Parameters Used for CHILD Data Processing

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( ν ) = I 0 ( ν ) exp [ - S ( T ) g ( ν - ν 0 ) N L ] ,
U S ( ν ) = A S V S P L ( ν ) [ 1 - a ( ν ) ] ,     U I 0 ( ν ) = A I 0 V I 0 P L ( ν ) .
A S V S = A I 0 V I 0 .
U d ( ν ) = G [ U I 0 ( ν ) - U S ( ν ) ] .
a ( ν ) = U d ( ν ) G × U I 0 ( ν ) .
a ( ν ) = A 0 V ( ν - ν 0 γ D , γ 1 γ D ) + b ( ν ) + n ( ν ) + f ( ν ) .
V ( x , y ) = 2 ln 2 π 3 / 2 γ γ D 0 exp ( - t 2 ) y 2 + ( x - t ) 2 d t , with - + V ( x , y ) d x = 1.
[ f short 2 ( ν ) ] 1 / 2 10 - 4 [ f short 2 ( δ ν ) ] 1 / 2 10 - 4 [ f short 2 ( δ ν ) ] 10 - 4 .
γ D = ν 0 c ( 8 k B T ln 2 m ) 1 / 2 ,
γ 1 = p air c br , air ( T ref T ) n , ( T ref - 296 K ) .
VMR = A 0 k T p L S ,

Metrics