Abstract

An erbium-doped superfluorescent fiber source utilizing a double-pass backward configuration is analyzed when a polarizer is inserted into an erbium-doped fiber to obtain polarized output light. Such a polarized configuration is simulated and experimentally confirmed to have the following characteristics: high polarization power conversion efficiency, pump-power-independent mean-wavelength operation, and low sensitivity to polarizer insertion loss.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech, Norwood, Mass., 1993).
  2. D. C. Hall, W. K. Burns, R. P. Moeller, “High-stability Er-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
    [CrossRef]
  3. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
    [CrossRef]
  4. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett. 16, 961–963 (1991).
    [CrossRef] [PubMed]
  5. D. C. Hall, W. K. Burns, “Wavelength stability optimization in Er-doped superfluorescent fiber sources,” Electron. Lett. 30, 653–654 (1994).
    [CrossRef]
  6. L. A. Wang, C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources utilizing double-pass backward configuration,” Electron. Lett. 32, 1815–1817 (1996).
    [CrossRef]
  7. L. A. Wang, C. D. Chen, “Characteristics comparison of Er-doped double pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photonics Technol. Lett. 9, 446–448 (1997).
    [CrossRef]
  8. L. A. Wang, C. D. Chen, “Comparison of efficiency and output power of optimal Er-doped superfluorescent fiber sources in different configurations,” Electron. Lett. 33, 703–704 (1997).
    [CrossRef]
  9. D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
    [CrossRef] [PubMed]
  10. L. A. Wang, C. D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” J. Lightwave Technol. 17, 2307–2315 (1999).
    [CrossRef]
  11. D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Fiber Technol. Mater. Devices Syst. 4, 453–470 (1998).
    [CrossRef]
  12. H. C. Su, L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15, 1357–1359 (2003).
    [CrossRef]

2003 (1)

H. C. Su, L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15, 1357–1359 (2003).
[CrossRef]

1999 (1)

1998 (1)

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Fiber Technol. Mater. Devices Syst. 4, 453–470 (1998).
[CrossRef]

1997 (3)

L. A. Wang, C. D. Chen, “Characteristics comparison of Er-doped double pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photonics Technol. Lett. 9, 446–448 (1997).
[CrossRef]

L. A. Wang, C. D. Chen, “Comparison of efficiency and output power of optimal Er-doped superfluorescent fiber sources in different configurations,” Electron. Lett. 33, 703–704 (1997).
[CrossRef]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
[CrossRef] [PubMed]

1996 (1)

L. A. Wang, C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources utilizing double-pass backward configuration,” Electron. Lett. 32, 1815–1817 (1996).
[CrossRef]

1995 (1)

D. C. Hall, W. K. Burns, R. P. Moeller, “High-stability Er-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

1994 (2)

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

D. C. Hall, W. K. Burns, “Wavelength stability optimization in Er-doped superfluorescent fiber sources,” Electron. Lett. 30, 653–654 (1994).
[CrossRef]

1991 (1)

Burns, W. K.

D. C. Hall, W. K. Burns, R. P. Moeller, “High-stability Er-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

D. C. Hall, W. K. Burns, “Wavelength stability optimization in Er-doped superfluorescent fiber sources,” Electron. Lett. 30, 653–654 (1994).
[CrossRef]

Chen, C. D.

L. A. Wang, C. D. Chen, “Characteristics comparison of Er-doped double pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photonics Technol. Lett. 9, 446–448 (1997).
[CrossRef]

L. A. Wang, C. D. Chen, “Comparison of efficiency and output power of optimal Er-doped superfluorescent fiber sources in different configurations,” Electron. Lett. 33, 703–704 (1997).
[CrossRef]

L. A. Wang, C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources utilizing double-pass backward configuration,” Electron. Lett. 32, 1815–1817 (1996).
[CrossRef]

Digonnet, M. J. F.

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Fiber Technol. Mater. Devices Syst. 4, 453–470 (1998).
[CrossRef]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
[CrossRef] [PubMed]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett. 16, 961–963 (1991).
[CrossRef] [PubMed]

Falquier, D. G.

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Fiber Technol. Mater. Devices Syst. 4, 453–470 (1998).
[CrossRef]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
[CrossRef] [PubMed]

Hall, D. C.

D. C. Hall, W. K. Burns, R. P. Moeller, “High-stability Er-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

D. C. Hall, W. K. Burns, “Wavelength stability optimization in Er-doped superfluorescent fiber sources,” Electron. Lett. 30, 653–654 (1994).
[CrossRef]

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett. 16, 961–963 (1991).
[CrossRef] [PubMed]

Lefèvre, H. C.

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech, Norwood, Mass., 1993).

Moeller, R. P.

D. C. Hall, W. K. Burns, R. P. Moeller, “High-stability Er-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

Shaw, H. J.

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Fiber Technol. Mater. Devices Syst. 4, 453–470 (1998).
[CrossRef]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
[CrossRef] [PubMed]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Su, C. D.

Su, H. C.

H. C. Su, L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15, 1357–1359 (2003).
[CrossRef]

Wagener, J. L.

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Fiber Technol. Mater. Devices Syst. 4, 453–470 (1998).
[CrossRef]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
[CrossRef] [PubMed]

Wang, L. A.

H. C. Su, L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15, 1357–1359 (2003).
[CrossRef]

L. A. Wang, C. D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” J. Lightwave Technol. 17, 2307–2315 (1999).
[CrossRef]

L. A. Wang, C. D. Chen, “Characteristics comparison of Er-doped double pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photonics Technol. Lett. 9, 446–448 (1997).
[CrossRef]

L. A. Wang, C. D. Chen, “Comparison of efficiency and output power of optimal Er-doped superfluorescent fiber sources in different configurations,” Electron. Lett. 33, 703–704 (1997).
[CrossRef]

L. A. Wang, C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources utilizing double-pass backward configuration,” Electron. Lett. 32, 1815–1817 (1996).
[CrossRef]

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett. 16, 961–963 (1991).
[CrossRef] [PubMed]

Electron. Lett. (3)

D. C. Hall, W. K. Burns, “Wavelength stability optimization in Er-doped superfluorescent fiber sources,” Electron. Lett. 30, 653–654 (1994).
[CrossRef]

L. A. Wang, C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources utilizing double-pass backward configuration,” Electron. Lett. 32, 1815–1817 (1996).
[CrossRef]

L. A. Wang, C. D. Chen, “Comparison of efficiency and output power of optimal Er-doped superfluorescent fiber sources in different configurations,” Electron. Lett. 33, 703–704 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

L. A. Wang, C. D. Chen, “Characteristics comparison of Er-doped double pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photonics Technol. Lett. 9, 446–448 (1997).
[CrossRef]

H. C. Su, L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15, 1357–1359 (2003).
[CrossRef]

J. Lightwave Technol. (3)

D. C. Hall, W. K. Burns, R. P. Moeller, “High-stability Er-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

L. A. Wang, C. D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” J. Lightwave Technol. 17, 2307–2315 (1999).
[CrossRef]

Opt. Fiber Technol. Mater. Devices Syst. (1)

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Fiber Technol. Mater. Devices Syst. 4, 453–470 (1998).
[CrossRef]

Opt. Lett. (2)

Other (1)

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech, Norwood, Mass., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of four SFS basic configurations: (a) SPF, (b) SPB, (c) DPF, and (d) DPB.

Fig. 2
Fig. 2

Simulated dependence of k values on polarizer positions for the DPB SFS.

Fig. 3
Fig. 3

Simulated dependence of k values on polarizer positions for the DPB SFS having a 13-m-long EDF but different insertion losses.

Fig. 4
Fig. 4

Dependence of k values on polarizer insertion loss for each optimal SFS.

Fig. 5
Fig. 5

Dependence of k values and SFS output extinction ratio on pump power.

Fig. 6
Fig. 6

Dependence of mean wavelength and linewidth on pump power for polarized and unpolarized DPB SFSs.

Fig. 7
Fig. 7

Measured dependence of output power on pump power for polarized and unpolarized DPB SFSs.

Fig. 8
Fig. 8

Measured dependence of mean wavelength and linewidth on pump power for polarized and unpolarized DPB SFSs.

Fig. 9
Fig. 9

Measured dependence of k on polarizer insertion loss for DPB and SPB SFSs.

Tables (1)

Tables Icon

Table 1 Optimal Conditions for Four Basic Superfluorescent Fiber Sources

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ASE ( ) + ( λ i ) = 0 , P ASE ( ) + ( λ i ) = 0 ,             z = 0 ; P ASE ( ) - ( λ i ) = R P ASE ( ) + ( λ i ) , P ASE ( ) - ( λ i ) = R P ASE ( ) + ( λ i ) ,             z = L .
P ASE ( ) + α P ASE ( ) + ( λ i ) , P ASE ( ) + ( λ i ) = α P ASE ( ) + ( λ i ) , P ASE ( ) - ( λ i ) = α P ASE ( ) - ( λ i ) , P ASE ( ) - ( λ i ) = α P ASE ( ) + ( λ i ) ,             at z = L P ,
Δ ν = [ P ( ν ) d ν ] 2 P 2 ( ν ) d ν .
d λ ¯ source d T = λ ¯ source T + ( λ ¯ source λ ¯ pump ) ( λ ¯ pump T ) + ( λ ¯ source P pump ) ( P pump T ) .

Metrics