Abstract

Many current rapid transmittance algorithms, specifically the Optical Path Transmittance (OPTRAN), are based on use of effective transmittances to account for the effects of polychromatic radiation on the transmittance calculations. We document how OPTRAN was modified by replacing the effective transmittance concept with a correction term. Use of the correction term solves some numerical problems that were associated with use of effective transmittances, greatly reduces the line-by-line computational burden, and allows for the efficient inclusion of more gases. This correction method can easily be applied to any other fast models that use the effective transmittance approach.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and variable mixing ratios at variable viewing angles,” Appl. Opt. 34, 6269–6274 (1995).
    [CrossRef] [PubMed]
  2. L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995).
    [CrossRef] [PubMed]
  3. L. M. McMillin, H. E. Fleming, “Atmospheric transmittance of an absorbing gas: a computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres,” Appl. Opt. 15, 358–363 (1976).
    [CrossRef] [PubMed]
  4. J. Derber, “The use of radiance data in the NCEP global and regional data assimilation systems,” in Proceedings of the Twelfth International TOVS Study Conference, 2002 (Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Victoria 3001, Australia); http://www.bom/gov.au/bmrc/basic/tors/ctsc.html .
  5. T. J. Kleespies, P. V. Delst, L. M. McMillin, J. Derber, “Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model,” Appl. Opt. 43, 3103–3109 (2004).
    [CrossRef] [PubMed]
  6. R. M. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
    [CrossRef]
  7. M. Matricardi, R. M. Saunders, “Fast radiative transfer model for assimilation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999).
    [CrossRef]
  8. J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” , (European Center for Medium Range Weather Forecasts, Shinfield Park, Reading, UK, 1991).
  9. S. Hannon, L. Strow, W. McMillan, “Atmospheric infrared fast transmittance models: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds.,Proc. SPIE2830, 94–105 (1996).
    [CrossRef]
  10. M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” (National Oceanic and Atmospheric Administration, Surtland, Md., 1981).
  11. L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. DeSouza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” Q. J. R. Meteorol. Soc. 59, 481–493 (1998).
  12. S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
    [CrossRef]
  13. W. W. McMillan, L. L. Strow, W. L. Smith, H. E. Revercomb, H. L. Huang, “The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume,” Geophys. Res. Lett. 23, 3199–3202 (1996).
    [CrossRef]
  14. C. Barnet, S. Datta, L. Strow, “Trace gas measurement from the atmospheric infrared sounder (AIRS),” in Optical Remote Sensing, Postconference Digest, Vol. 85 of 2003 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 89–92.
  15. F. Chevallier, “TIGR-like sampled databases of atmospheric profiles from the ECMWF 50-level forecast model,” (European Center for Medium Range Weather Forecasts, Shinfield Park, Reading, UK, 1999).

2004

1999

R. M. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
[CrossRef]

M. Matricardi, R. M. Saunders, “Fast radiative transfer model for assimilation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999).
[CrossRef]

1998

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. DeSouza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” Q. J. R. Meteorol. Soc. 59, 481–493 (1998).

1996

W. W. McMillan, L. L. Strow, W. L. Smith, H. E. Revercomb, H. L. Huang, “The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume,” Geophys. Res. Lett. 23, 3199–3202 (1996).
[CrossRef]

1995

1992

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

1976

Barnet, C.

C. Barnet, S. Datta, L. Strow, “Trace gas measurement from the atmospheric infrared sounder (AIRS),” in Optical Remote Sensing, Postconference Digest, Vol. 85 of 2003 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 89–92.

Benson, R. G.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. DeSouza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” Q. J. R. Meteorol. Soc. 59, 481–493 (1998).

Brunel, P.

R. M. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
[CrossRef]

Chevallier, F.

F. Chevallier, “TIGR-like sampled databases of atmospheric profiles from the ECMWF 50-level forecast model,” (European Center for Medium Range Weather Forecasts, Shinfield Park, Reading, UK, 1999).

Clough, S. A.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

Crone, L. J.

Datta, S.

C. Barnet, S. Datta, L. Strow, “Trace gas measurement from the atmospheric infrared sounder (AIRS),” in Optical Remote Sensing, Postconference Digest, Vol. 85 of 2003 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 89–92.

Delst, P. V.

Derber, J.

DeSouza-Machado, S.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. DeSouza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” Q. J. R. Meteorol. Soc. 59, 481–493 (1998).

Eyre, J. R.

J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” , (European Center for Medium Range Weather Forecasts, Shinfield Park, Reading, UK, 1991).

Fleming, H. E.

L. M. McMillin, H. E. Fleming, “Atmospheric transmittance of an absorbing gas: a computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres,” Appl. Opt. 15, 358–363 (1976).
[CrossRef] [PubMed]

M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” (National Oceanic and Atmospheric Administration, Surtland, Md., 1981).

Goldberg, M. D.

Hannon, S.

S. Hannon, L. Strow, W. McMillan, “Atmospheric infrared fast transmittance models: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds.,Proc. SPIE2830, 94–105 (1996).
[CrossRef]

Hannon, S. E.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. DeSouza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” Q. J. R. Meteorol. Soc. 59, 481–493 (1998).

Huang, H. L.

W. W. McMillan, L. L. Strow, W. L. Smith, H. E. Revercomb, H. L. Huang, “The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume,” Geophys. Res. Lett. 23, 3199–3202 (1996).
[CrossRef]

Iacono, M. J.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

Kleespies, T. J.

Matricardi, M.

M. Matricardi, R. M. Saunders, “Fast radiative transfer model for assimilation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999).
[CrossRef]

R. M. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
[CrossRef]

McMillan, W.

S. Hannon, L. Strow, W. McMillan, “Atmospheric infrared fast transmittance models: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds.,Proc. SPIE2830, 94–105 (1996).
[CrossRef]

McMillan, W. W.

W. W. McMillan, L. L. Strow, W. L. Smith, H. E. Revercomb, H. L. Huang, “The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume,” Geophys. Res. Lett. 23, 3199–3202 (1996).
[CrossRef]

McMillin, L. M.

Moncet, J. L.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

Motteler, H. E.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. DeSouza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” Q. J. R. Meteorol. Soc. 59, 481–493 (1998).

Neuendorffer, A. C.

M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” (National Oceanic and Atmospheric Administration, Surtland, Md., 1981).

Revercomb, H. E.

W. W. McMillan, L. L. Strow, W. L. Smith, H. E. Revercomb, H. L. Huang, “The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume,” Geophys. Res. Lett. 23, 3199–3202 (1996).
[CrossRef]

Saunders, R. M.

M. Matricardi, R. M. Saunders, “Fast radiative transfer model for assimilation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999).
[CrossRef]

R. M. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
[CrossRef]

Smith, W. L.

W. W. McMillan, L. L. Strow, W. L. Smith, H. E. Revercomb, H. L. Huang, “The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume,” Geophys. Res. Lett. 23, 3199–3202 (1996).
[CrossRef]

Strow, L.

C. Barnet, S. Datta, L. Strow, “Trace gas measurement from the atmospheric infrared sounder (AIRS),” in Optical Remote Sensing, Postconference Digest, Vol. 85 of 2003 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 89–92.

S. Hannon, L. Strow, W. McMillan, “Atmospheric infrared fast transmittance models: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds.,Proc. SPIE2830, 94–105 (1996).
[CrossRef]

Strow, L. L.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. DeSouza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” Q. J. R. Meteorol. Soc. 59, 481–493 (1998).

W. W. McMillan, L. L. Strow, W. L. Smith, H. E. Revercomb, H. L. Huang, “The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume,” Geophys. Res. Lett. 23, 3199–3202 (1996).
[CrossRef]

Weinreb, M. P.

M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” (National Oceanic and Atmospheric Administration, Surtland, Md., 1981).

Appl. Opt.

Geophys. Res. Lett.

W. W. McMillan, L. L. Strow, W. L. Smith, H. E. Revercomb, H. L. Huang, “The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume,” Geophys. Res. Lett. 23, 3199–3202 (1996).
[CrossRef]

J. Geophys. Res.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

Q. J. R. Meteorol. Soc.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. DeSouza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” Q. J. R. Meteorol. Soc. 59, 481–493 (1998).

R. M. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
[CrossRef]

Other

C. Barnet, S. Datta, L. Strow, “Trace gas measurement from the atmospheric infrared sounder (AIRS),” in Optical Remote Sensing, Postconference Digest, Vol. 85 of 2003 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 89–92.

F. Chevallier, “TIGR-like sampled databases of atmospheric profiles from the ECMWF 50-level forecast model,” (European Center for Medium Range Weather Forecasts, Shinfield Park, Reading, UK, 1999).

J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” , (European Center for Medium Range Weather Forecasts, Shinfield Park, Reading, UK, 1991).

S. Hannon, L. Strow, W. McMillan, “Atmospheric infrared fast transmittance models: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds.,Proc. SPIE2830, 94–105 (1996).
[CrossRef]

M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” (National Oceanic and Atmospheric Administration, Surtland, Md., 1981).

J. Derber, “The use of radiance data in the NCEP global and regional data assimilation systems,” in Proceedings of the Twelfth International TOVS Study Conference, 2002 (Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Victoria 3001, Australia); http://www.bom/gov.au/bmrc/basic/tors/ctsc.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Comparisons of the maximum layer amounts of water vapor (upper panel) and ozone (lower panel) in each of the 100 layers for the 32- and 48-profile sets.

Fig. 2
Fig. 2

Fitting errors that we obtained from OPTRAN using the fixed dry gases compared with those using the variable dry gases for the 48 profiles and five viewing angles.

Fig. 3
Fig. 3

Root mean square of the difference of brightness temperatures computed with τd+w+o and brightness temperatures computed with the product of τdτwτo for the 48 profiles and five viewing angles.

Fig. 4
Fig. 4

Root-mean-square difference between the total fitting errors of brightness temperatures obtained with the product of the predicted transmittances of dry gases, water vapor, and ozone by OPTRAN ( τ ^ d τ ^ w τ ^ o) and the corresponding values (τdτwτo) from the LBL computation for the 48 profiles and five viewing angles.

Fig. 5
Fig. 5

Fitting errors in OPTRAN for the pressure absorber space compared with errors obtained with the water-vapor absorber space in the fitting of the correction term for the 48 profiles and five viewing angles.

Fig. 6
Fig. 6

Comparison of the fitting errors in OPTRAN by only one correction with the water-vapor absorber space versus by two corrections with the second correction with the pressure absorber space for the 48 profiles and five viewing angles.

Fig. 7
Fig. 7

Errors of dependent tests in OPTRAN for the correction term versus those for the effective transmittances for both the 32-profile data set (upper panel) and the 48-profile data set (lower panel) and five viewing angles.

Fig. 8
Fig. 8

Errors of independent tests in OPTRAN for the correction term versus those for the effective transmittances with the coefficients derived from the 48-profile set against the 117 ECMWF independent profiles and five viewing angles.

Fig. 9
Fig. 9

Comparison of the fitting errors when OPTRAN includes the fitting to CH4 and CO with those obtained when these two gases are included in the dry gases. The LBL calculation included the effects of varying the CH4 and CO amounts for the 48 profiles and five viewing angles.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

τ d + w + o = τ d ( τ d + o / τ d ) ( τ d + w + o / τ d + o ) = τ d τ o * τ w * ,
τ o * = τ d + o / τ d , τ w * = τ d + w + o / τ d + o .
τ c = τ d + w + o / ( τ d τ w τ o )             ( ratio approach ) ,
τ c = τ d + w + o - τ d τ w τ o             ( deviation approach ) .
k c = - ln ( τ c , i / τ c , i - 1 ) / ( A i - A i - 1 ) ,
τ ^ d + w + o i = exp [ - ( k ^ d i + k ^ c d i ) Δ P i - ( k ^ w i + k ^ c w i ) Δ W i - ( k ^ o i + k ^ c o i ) Δ O i ] ,
τ ^ d + w + o i = τ ^ d i τ ^ w i τ ^ o i τ ^ c i = exp ( - k ^ d i Δ P i - k ^ w i Δ W i - k ^ 0 i Δ O i - k ^ c i Δ A i ) ,
τ ^ d + w + o i = exp [ - k ^ d i Δ P i - ( k ^ w i + k ^ c i ) Δ W i - k ^ o i Δ O i ] .
Δ BT = BT ( τ d + w + o ) - BT ( τ ^ c τ ^ d τ ^ w τ ^ o ) ,
τ c d = τ d + w + o / ( τ d τ w τ o τ ^ c w )
Δ BT = BT ( τ d + w + o ) - BT ( τ ^ c d τ ^ c w τ ^ d τ ^ w τ ^ o ) .

Metrics