Abstract

We present a method of replacing a section of the core of a D-shaped optical fiber with sensing materials as a platform for various extrinsic fiber sensors. In this configuration light guides within the sensing material allow for strong interaction between the sensing material and the optical field. Initial experimental results indicate that replacing the fiber core with polymer enhances its temperature sensitivity by at least a factor of 5. The new technique is promising as a means for incorporating various sensing materials into the path of a beam traveling in an optical fiber.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, Chichester, UK, 2002).
  2. E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
    [CrossRef]
  3. A. Messica, A. Greenstein, A. Katzir, U. Schiessl, M. Tacke, “Fiber-optic evanescent wave sensor for gas detection,” Opt. Lett. 19, 1167–1169 (1994).
    [CrossRef] [PubMed]
  4. V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef] [PubMed]
  5. S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Light. Technol. 14, 2231–2235 (1996).
    [CrossRef]
  6. D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, G. Miller, “Controlled core removal from a D-shaped optical fiber,” Appl. Opt. 42, 7121–7125 (2003).
    [CrossRef]
  7. K. H. Smith, R. H. Selfridge, S. M. Schultz, D. J. Markos, B. L. Ipson, “Analysis of replacing an optical fiber core with polymer,” Opt. Express12, 354–360 (2004), http://www.opticsexpress.org .
    [CrossRef]
  8. M. Završnik, D. Đonlagi, “Fiber-optic polarimetric thermometer using low extinction ratio polarizer and low coherence source,” in Proceedings of the Sixteenth IEEE Instrumentation and Measurement Technology Conference, 1999. IMTC/99. 3, 1520–1525 (1999).
  9. W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 715–721 (1990).
    [CrossRef]
  10. W. Eickhoff, “Temperature sensing by mode-mode interference in birefringent optical fibers,” Opt. Lett. 6, 204–206 (1981).
    [CrossRef] [PubMed]
  11. K. H. Smith, D. J. Markos, B. L. Ipson, S. M. Schultz, R. H. Selfridge, J. P. Barber, K. J. Campbell, T. D. Monte, “Fabrication and analysis of a low-loss in-fiber active polymer waveguide,” Appl. Opt. 43, 933–939 (2004).
    [CrossRef] [PubMed]
  12. F. Zhang, J. W. Y. Lit, “Temperature and strain sensitivities of high-birefringence elliptical fibers,” Appl. Opt. 31, 1239–1243 (1992).
    [CrossRef] [PubMed]

2004 (1)

2003 (1)

1996 (2)

V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef] [PubMed]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Light. Technol. 14, 2231–2235 (1996).
[CrossRef]

1995 (1)

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

1994 (1)

1992 (1)

1990 (1)

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 715–721 (1990).
[CrossRef]

1981 (1)

Barber, J. P.

Barwicz, A.

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 715–721 (1990).
[CrossRef]

Bhatia, V.

Bock, W. J.

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 715–721 (1990).
[CrossRef]

Campbell, K. J.

Ðonlagi, D.

M. Završnik, D. Đonlagi, “Fiber-optic polarimetric thermometer using low extinction ratio polarizer and low coherence source,” in Proceedings of the Sixteenth IEEE Instrumentation and Measurement Technology Conference, 1999. IMTC/99. 3, 1520–1525 (1999).

Dyott, R. B.

Eickhoff, W.

Greenstein, A.

Ipson, B. L.

Katzir, A.

Lit, J. W. Y.

Markos, D. J.

Messica, A.

Miller, G.

Mononobe, S.

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Light. Technol. 14, 2231–2235 (1996).
[CrossRef]

Monte, T. D.

Ohtsu, M.

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Light. Technol. 14, 2231–2235 (1996).
[CrossRef]

Schiessl, U.

Schultz, S. M.

Selfridge, R. H.

Smith, K. H.

Tacke, M.

Udd, E.

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

Vengsarkar, A. M.

Wolinski, T. R.

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 715–721 (1990).
[CrossRef]

Završnik, M.

M. Završnik, D. Đonlagi, “Fiber-optic polarimetric thermometer using low extinction ratio polarizer and low coherence source,” in Proceedings of the Sixteenth IEEE Instrumentation and Measurement Technology Conference, 1999. IMTC/99. 3, 1520–1525 (1999).

Zhang, F.

Appl. Opt. (3)

IEEE Trans. Instrum. Meas. (1)

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 715–721 (1990).
[CrossRef]

J. Light. Technol. (1)

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Light. Technol. 14, 2231–2235 (1996).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

Other (3)

K. H. Smith, R. H. Selfridge, S. M. Schultz, D. J. Markos, B. L. Ipson, “Analysis of replacing an optical fiber core with polymer,” Opt. Express12, 354–360 (2004), http://www.opticsexpress.org .
[CrossRef]

M. Završnik, D. Đonlagi, “Fiber-optic polarimetric thermometer using low extinction ratio polarizer and low coherence source,” in Proceedings of the Sixteenth IEEE Instrumentation and Measurement Technology Conference, 1999. IMTC/99. 3, 1520–1525 (1999).

J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, Chichester, UK, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Core-replaced in-fiber sensor based on D-shaped optical fiber.

Fig. 2
Fig. 2

D-shaped silica fiber showing the doping of different regions of the fiber.

Fig. 3
Fig. 3

SEM image of a D-shaped fiber showing the groove left when the core is partially removed in HF acid.

Fig. 4
Fig. 4

SEM image of a core-replaced D-fiber. Polymer partially fills the groove left by the HF etch.

Fig. 5
Fig. 5

Diagram of a polarimetric thermal sensor in which the core has been partially removed and replaced with polymer.

Fig. 6
Fig. 6

Output power as a function of temperature for an unetched fiber.

Fig. 7
Fig. 7

Output power as a function of temperature for a core-replaced fiber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ B = ( N TE , T - N TM , T ) - ( N TE , 0 - N TM , 0 ) ,
Δ ϕ = 2 π λ Δ B L ,
P = P 0 sin 2 ( Δ ϕ 2 + ϕ 0 ) ,

Metrics