Abstract

InAs has previously been reported to be an efficient emitter of terahertz radiation at low excitation fluences by use of femtosecond laser pulses. The scaling and saturation of terahertz emission from a (100) InAs surface as a function of excitation fluence is measured and quantitatively compared with the emission from a GaAs large-aperture photoconductive switch. We find that, although the instantaneous peak radiated terahertz field from (100) InAs exceeds the peak radiated signals from a GaAs large-aperture photoconductive switch biased at 1.6 kV/cm, the pulse duration is shorter. For the InAs source the total energy radiated is less than can be obtained from a GaAs large-aperture photoconductive switch.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
    [CrossRef]
  2. X.-C. Zhang, D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
    [CrossRef]
  3. B. B. Hu, X.-C. Zhang, D. H. Auston, P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
    [CrossRef]
  4. N. Sarakura, H. Ohtake, S. Izumida, Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654–656 (1998).
    [CrossRef]
  5. C. Weiss, R. Wallenstein, R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
    [CrossRef]
  6. R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
    [CrossRef]
  7. J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001).
    [CrossRef]
  8. D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993).
    [CrossRef] [PubMed]
  9. T. Löffler, H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma,” J. Appl. Phys. 91, 2611–2614 (2002).
    [CrossRef]
  10. A. Gürtler, C. Winnewisser, H. Helm, P. U. Jepsen, “Terahertz propagation in the near field and far field,” J. Opt. Soc. Am. A. 17, 74–83 (2000).
    [CrossRef]
  11. D. You, P. H. Bucksbaum, “Propagation of half-cycle far infrared pulses,” J. Opt. Soc. Am. B. 14, 1651–1655 (1997).
    [CrossRef]
  12. E. Budiarto, N.-W. Pu, S. Jeong, J. Bokor, “Near-field propagation of terahertz pulses from a large-aperture antenna,” Opt. Lett. 23, 213–215 (1998).
    [CrossRef]
  13. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B. 18, 313–317 (2001).
    [CrossRef]
  14. M. Reid, R. Fedosejevs, “Terahertz emission from (100) InAs at high excitation fluences,” Appl. Phys. Lett. (to be published).
  15. T. Hattori, K. Tukamoto, H. Nakatsuka, “Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna,” Jpn. J. Appl. Phys. 40, 4907–4912 (2001).
    [CrossRef]
  16. G. Rodriguez, A. J. Taylor, “Screening of the bias field in terahertz generation from photoconductors,” Opt. Lett. 21, 1046–1048 (1996).
    [CrossRef] [PubMed]
  17. J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
    [CrossRef]
  18. H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
    [CrossRef]
  19. H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
    [CrossRef]
  20. M. Hangyo, M. Migita, K. Nakayama, “Magnetic field and temperature dependence of terahertz radiation from InAs surfaces excited by femtosecond laser pulses,” J. Appl. Phys. 90, 3409–3412 (2001).
    [CrossRef]
  21. H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarakura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field,” Appl. Phys. Lett. 83, 1068–1070 (2003).
    [CrossRef]

2003 (3)

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarakura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field,” Appl. Phys. Lett. 83, 1068–1070 (2003).
[CrossRef]

2002 (1)

T. Löffler, H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma,” J. Appl. Phys. 91, 2611–2614 (2002).
[CrossRef]

2001 (4)

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B. 18, 313–317 (2001).
[CrossRef]

T. Hattori, K. Tukamoto, H. Nakatsuka, “Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna,” Jpn. J. Appl. Phys. 40, 4907–4912 (2001).
[CrossRef]

M. Hangyo, M. Migita, K. Nakayama, “Magnetic field and temperature dependence of terahertz radiation from InAs surfaces excited by femtosecond laser pulses,” J. Appl. Phys. 90, 3409–3412 (2001).
[CrossRef]

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001).
[CrossRef]

2000 (3)

C. Weiss, R. Wallenstein, R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

A. Gürtler, C. Winnewisser, H. Helm, P. U. Jepsen, “Terahertz propagation in the near field and far field,” J. Opt. Soc. Am. A. 17, 74–83 (2000).
[CrossRef]

1998 (2)

N. Sarakura, H. Ohtake, S. Izumida, Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654–656 (1998).
[CrossRef]

E. Budiarto, N.-W. Pu, S. Jeong, J. Bokor, “Near-field propagation of terahertz pulses from a large-aperture antenna,” Opt. Lett. 23, 213–215 (1998).
[CrossRef]

1997 (1)

D. You, P. H. Bucksbaum, “Propagation of half-cycle far infrared pulses,” J. Opt. Soc. Am. B. 14, 1651–1655 (1997).
[CrossRef]

1996 (1)

1993 (1)

1992 (2)

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

X.-C. Zhang, D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
[CrossRef]

1990 (1)

B. B. Hu, X.-C. Zhang, D. H. Auston, P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

1984 (1)

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Arnone, D. D.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Auston, D. H.

X.-C. Zhang, D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
[CrossRef]

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Bakker, H. J.

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B. 18, 313–317 (2001).
[CrossRef]

Beigang, R.

C. Weiss, R. Wallenstein, R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

Bokor, J.

Bucksbaum, P. H.

Budiarto, E.

Chen, Q.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Cheung, K. P.

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Ciesla, C. M.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Corchia, A.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Crowell, P. A.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001).
[CrossRef]

Darrow, J. T.

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

Davies, A. G.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Dykaar, D. R.

Fedosejevs, R.

M. Reid, R. Fedosejevs, “Terahertz emission from (100) InAs at high excitation fluences,” Appl. Phys. Lett. (to be published).

Gürtler, A.

A. Gürtler, C. Winnewisser, H. Helm, P. U. Jepsen, “Terahertz propagation in the near field and far field,” J. Opt. Soc. Am. A. 17, 74–83 (2000).
[CrossRef]

Hangyo, M.

M. Hangyo, M. Migita, K. Nakayama, “Magnetic field and temperature dependence of terahertz radiation from InAs surfaces excited by femtosecond laser pulses,” J. Appl. Phys. 90, 3409–3412 (2001).
[CrossRef]

Hattori, T.

T. Hattori, K. Tukamoto, H. Nakatsuka, “Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna,” Jpn. J. Appl. Phys. 40, 4907–4912 (2001).
[CrossRef]

Hebert, D.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001).
[CrossRef]

Helm, H.

A. Gürtler, C. Winnewisser, H. Helm, P. U. Jepsen, “Terahertz propagation in the near field and far field,” J. Opt. Soc. Am. A. 17, 74–83 (2000).
[CrossRef]

Heyman, J. N.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001).
[CrossRef]

Hirosumi, T.

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

Hosomizu, M.

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

Hu, B. B.

B. B. Hu, X.-C. Zhang, D. H. Auston, P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

Izumida, S.

N. Sarakura, H. Ohtake, S. Izumida, Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654–656 (1998).
[CrossRef]

Jeong, S.

Jepsen, P. U.

A. Gürtler, C. Winnewisser, H. Helm, P. U. Jepsen, “Terahertz propagation in the near field and far field,” J. Opt. Soc. Am. A. 17, 74–83 (2000).
[CrossRef]

Johnston, M. B.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Jones, G. A. C.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Jones, R. R.

Linfield, E. H.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Liu, Z.

N. Sarakura, H. Ohtake, S. Izumida, Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654–656 (1998).
[CrossRef]

Löffler, T.

T. Löffler, H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma,” J. Appl. Phys. 91, 2611–2614 (2002).
[CrossRef]

McLaughlin, R.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Migita, M.

M. Hangyo, M. Migita, K. Nakayama, “Magnetic field and temperature dependence of terahertz radiation from InAs surfaces excited by femtosecond laser pulses,” J. Appl. Phys. 90, 3409–3412 (2001).
[CrossRef]

Mueller, T.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001).
[CrossRef]

Nakatsuka, H.

T. Hattori, K. Tukamoto, H. Nakatsuka, “Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna,” Jpn. J. Appl. Phys. 40, 4907–4912 (2001).
[CrossRef]

Nakayama, K.

M. Hangyo, M. Migita, K. Nakayama, “Magnetic field and temperature dependence of terahertz radiation from InAs surfaces excited by femtosecond laser pulses,” J. Appl. Phys. 90, 3409–3412 (2001).
[CrossRef]

Neocleous, P.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001).
[CrossRef]

Nienhuys, H.-K.

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B. 18, 313–317 (2001).
[CrossRef]

Nishijima, G.

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

Ohtake, H.

N. Sarakura, H. Ohtake, S. Izumida, Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654–656 (1998).
[CrossRef]

Ono, S.

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarakura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field,” Appl. Phys. Lett. 83, 1068–1070 (2003).
[CrossRef]

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

Pepper, M.

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

Planken, P. C. M.

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B. 18, 313–317 (2001).
[CrossRef]

Pu, N.-W.

Quema, A.

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarakura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field,” Appl. Phys. Lett. 83, 1068–1070 (2003).
[CrossRef]

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

Reid, M.

M. Reid, R. Fedosejevs, “Terahertz emission from (100) InAs at high excitation fluences,” Appl. Phys. Lett. (to be published).

Rodriguez, G.

Roskos, H. G.

T. Löffler, H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma,” J. Appl. Phys. 91, 2611–2614 (2002).
[CrossRef]

Sakai, M.

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

Sarakura, N.

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarakura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field,” Appl. Phys. Lett. 83, 1068–1070 (2003).
[CrossRef]

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

N. Sarakura, H. Ohtake, S. Izumida, Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654–656 (1998).
[CrossRef]

Smith, P. R.

B. B. Hu, X.-C. Zhang, D. H. Auston, P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Sugiura, T.

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

Suzuki, Y.

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

Takahashi, H.

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarakura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field,” Appl. Phys. Lett. 83, 1068–1070 (2003).
[CrossRef]

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

Taylor, A. J.

Tsukamoto, T.

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

Tukamoto, K.

T. Hattori, K. Tukamoto, H. Nakatsuka, “Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna,” Jpn. J. Appl. Phys. 40, 4907–4912 (2001).
[CrossRef]

Unterrainer, K.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001).
[CrossRef]

Wallenstein, R.

C. Weiss, R. Wallenstein, R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

Watanabe, K.

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

Weiss, C.

C. Weiss, R. Wallenstein, R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

Wenckebach, T.

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B. 18, 313–317 (2001).
[CrossRef]

Winnewisser, C.

A. Gürtler, C. Winnewisser, H. Helm, P. U. Jepsen, “Terahertz propagation in the near field and far field,” J. Opt. Soc. Am. A. 17, 74–83 (2000).
[CrossRef]

Yano, T.

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

Yoshida, M.

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

Yoshioka, R.

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarakura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field,” Appl. Phys. Lett. 83, 1068–1070 (2003).
[CrossRef]

You, D.

Zhang, X.-C.

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

X.-C. Zhang, D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

Appl. Phys. Lett. (6)

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

C. Weiss, R. Wallenstein, R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000).
[CrossRef]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarakura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field,” Appl. Phys. Lett. 83, 1068–1070 (2003).
[CrossRef]

H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992).
[CrossRef]

J. Appl. Phys. (4)

N. Sarakura, H. Ohtake, S. Izumida, Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654–656 (1998).
[CrossRef]

X.-C. Zhang, D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992).
[CrossRef]

T. Löffler, H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma,” J. Appl. Phys. 91, 2611–2614 (2002).
[CrossRef]

M. Hangyo, M. Migita, K. Nakayama, “Magnetic field and temperature dependence of terahertz radiation from InAs surfaces excited by femtosecond laser pulses,” J. Appl. Phys. 90, 3409–3412 (2001).
[CrossRef]

J. Opt. Soc. Am. A. (1)

A. Gürtler, C. Winnewisser, H. Helm, P. U. Jepsen, “Terahertz propagation in the near field and far field,” J. Opt. Soc. Am. A. 17, 74–83 (2000).
[CrossRef]

J. Opt. Soc. Am. B. (2)

D. You, P. H. Bucksbaum, “Propagation of half-cycle far infrared pulses,” J. Opt. Soc. Am. B. 14, 1651–1655 (1997).
[CrossRef]

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B. 18, 313–317 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003).
[CrossRef]

T. Hattori, K. Tukamoto, H. Nakatsuka, “Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna,” Jpn. J. Appl. Phys. 40, 4907–4912 (2001).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B. (1)

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001).
[CrossRef]

Other (1)

M. Reid, R. Fedosejevs, “Terahertz emission from (100) InAs at high excitation fluences,” Appl. Phys. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the THz system used in the experiments. FM, flip mirror; Pol, polarizer; BS, wedged beam splitter; PM, parabolic mirrors; QWP and HWP, quarter- and half-wave plates, respectively; WP, Wollaston prism; L1 and L2, +50- and −15-cm focal-length lenses; Block, visibly opaque beam block to block the fundamental; and ODL, optical delay line. The emitter used is either an externally biased GaAs photoconductive switch or a (100) oriented InAs surface. (1) and (2) represent beam paths to InAs and GaAs emitters, respectively.

Fig. 2
Fig. 2

Detected THz field as a function of excitation fluence for the two emitters used. Open triangles, signals from a GaAs LAPCS biased at 1.6 kV/cm; filled squares, signals from (100) InAs. Solid curves, fit to the data.

Fig. 3
Fig. 3

Estimated conversion efficiencies based on Eqs. (1)(4) with measured saturation values. The dashed curve is for the GaAs LAPCS at a 1.6-kV/cm bias, and the solid curve is for (100) InAs. The data points are from Fig. 2, with their associated experimental error.

Fig. 4
Fig. 4

Frequency spectrum of THz fields at the detector from the GaAs LAPCS biased at 1.6 kV/cm (dashed curve) and the (100) InAs (solid curve) at an excitation fluence of 1 mJ/cm2.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Estimation of Optical to Far-Infrared Conversion Efficiency

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = ( W THz W inp ) ,
W THz τ A E THz pk 2 2 η 0 .
E THz pk E THz pk measured T R T S .
W inp = aperature F opt excite ( x , y ) d x d y .
E rad , THz near field = E b ( F F + F sat ) ,
η = τ E b 2 2 F η 0 ( F F + F sat ) 2 .
η = τ E b 2 2 η 0 ( 1 4 F sat ) = 3.2 × 10 - 3 .

Metrics