Abstract

More than 90% of stations from the Irish and Celtic Seas are found to have significantly higher backscattering ratios in the blue (470 nm) than in the red (676 nm) wave band. Attempts to obtain optical closure by use of radiance transfer modeling were least successful for stations at which backscattering ratios are most strongly wavelength dependent. Significantly improved radiance transfer simulation results were obtained with a modified scattering correction algorithm for AC-9 absorption measurements that took wavelength dependency in the scattering phase function into account.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Mobley, “Light and Water: Radiative Transfer in Natural Waters,” (Academic, San Diego, 1994).
  2. A. Cunningham, J. C. Boyle, P. Wood, “Radiative transfer modelling of the relationship between seawater composition and remote sensing reflectance in sea lochs and fjords,” Int. J. Remote Sensing 23, 3713–3724 (2002).
    [CrossRef]
  3. D. McKee, A. Cunningham, S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369–4374 (2003).
    [CrossRef] [PubMed]
  4. T. J. Smyth, G. F. Moore, S. B. Groom, P. E. Land, T. Tyrrell, “Optical modeling and measurements of a coccolithophore bloom,” Appl. Opt. 41, 7679–7688 (2002).
    [CrossRef]
  5. G. C. Chang, T. D. Dickey, C. D. Mobley, E. Boss, W. S. Pegau, “Toward closure of upwelling radiance in coastal waters,” Appl. Opt. 42, 1574–1582 (2003).
    [CrossRef] [PubMed]
  6. J. R. V. Zaneveld, J. C. Kitchen, C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
    [CrossRef]
  7. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, C7, 14129–14142 (2001).
  8. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  9. H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr. 34, 1389–1409 (1989).
  10. W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
    [CrossRef] [PubMed]
  11. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  12. R. C. Smith, K. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  13. G. R. Fournier, J. L. Forand, “Analytic phase function for ocean water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 194–201 (1994).
    [CrossRef]
  14. C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
    [CrossRef] [PubMed]
  15. J. T. O. Kirk, “Monte Carlo modeling of the performance of a reflective tube absorption meter,” Appl. Opt. 31, 6463–6468 (1992).
    [CrossRef] [PubMed]
  16. J. Piskozub, P. J. Flatau, J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Oceanic Technol. 18, 438–445 (2001).
    [CrossRef]
  17. D. Stramski, J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
    [CrossRef] [PubMed]
  18. R. A. Leathers, C. S. Roesler, N. J. McCormick, “Ocean inherent optical property determination from in-water light field measurements,” Appl. Opt. 38, 5096–5103 (1999).
    [CrossRef]
  19. M. Stramska, D. Stramski, B. G. Mitchell, C. D. Mobley, “Estimation of the absorption and backscattering coefficients from in-water radiometric measurements,” Limnol. Oceanogr. 45, 628–641 (2000).
    [CrossRef]
  20. D. McKee, A. Cunningham, S. Craig, “Retrieval of inherent optical properties from in situ radiometric measurements in case II waters,” Appl. Opt. 42, 2804–2810 (2003).
    [CrossRef] [PubMed]

2003 (4)

2002 (3)

C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef] [PubMed]

A. Cunningham, J. C. Boyle, P. Wood, “Radiative transfer modelling of the relationship between seawater composition and remote sensing reflectance in sea lochs and fjords,” Int. J. Remote Sensing 23, 3713–3724 (2002).
[CrossRef]

T. J. Smyth, G. F. Moore, S. B. Groom, P. E. Land, T. Tyrrell, “Optical modeling and measurements of a coccolithophore bloom,” Appl. Opt. 41, 7679–7688 (2002).
[CrossRef]

2001 (2)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, C7, 14129–14142 (2001).

J. Piskozub, P. J. Flatau, J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Oceanic Technol. 18, 438–445 (2001).
[CrossRef]

2000 (1)

M. Stramska, D. Stramski, B. G. Mitchell, C. D. Mobley, “Estimation of the absorption and backscattering coefficients from in-water radiometric measurements,” Limnol. Oceanogr. 45, 628–641 (2000).
[CrossRef]

1999 (1)

1997 (2)

1993 (1)

1992 (1)

1989 (1)

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr. 34, 1389–1409 (1989).

1981 (1)

Baker, K.

Barnard, A. H.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, C7, 14129–14142 (2001).

Boss, E.

G. C. Chang, T. D. Dickey, C. D. Mobley, E. Boss, W. S. Pegau, “Toward closure of upwelling radiance in coastal waters,” Appl. Opt. 42, 1574–1582 (2003).
[CrossRef] [PubMed]

C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, C7, 14129–14142 (2001).

Boyle, J. C.

A. Cunningham, J. C. Boyle, P. Wood, “Radiative transfer modelling of the relationship between seawater composition and remote sensing reflectance in sea lochs and fjords,” Int. J. Remote Sensing 23, 3713–3724 (2002).
[CrossRef]

Chang, G. C.

Craig, S.

Cunningham, A.

Dickey, T. D.

Flatau, P. J.

J. Piskozub, P. J. Flatau, J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Oceanic Technol. 18, 438–445 (2001).
[CrossRef]

Forand, J. L.

G. R. Fournier, J. L. Forand, “Analytic phase function for ocean water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 194–201 (1994).
[CrossRef]

Fournier, G. R.

G. R. Fournier, J. L. Forand, “Analytic phase function for ocean water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 194–201 (1994).
[CrossRef]

Fry, E. S.

Gentili, B.

Gordon, H. R.

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr. 34, 1389–1409 (1989).

Gray, D.

Groom, S. B.

Kirk, J. T. O.

Kitchen, J. C.

J. R. V. Zaneveld, J. C. Kitchen, C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

Land, P. E.

Leathers, R. A.

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, C7, 14129–14142 (2001).

McCormick, N. J.

McKee, D.

Mitchell, B. G.

M. Stramska, D. Stramski, B. G. Mitchell, C. D. Mobley, “Estimation of the absorption and backscattering coefficients from in-water radiometric measurements,” Limnol. Oceanogr. 45, 628–641 (2000).
[CrossRef]

Mobley, C. D.

G. C. Chang, T. D. Dickey, C. D. Mobley, E. Boss, W. S. Pegau, “Toward closure of upwelling radiance in coastal waters,” Appl. Opt. 42, 1574–1582 (2003).
[CrossRef] [PubMed]

C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef] [PubMed]

M. Stramska, D. Stramski, B. G. Mitchell, C. D. Mobley, “Estimation of the absorption and backscattering coefficients from in-water radiometric measurements,” Limnol. Oceanogr. 45, 628–641 (2000).
[CrossRef]

C. D. Mobley, “Light and Water: Radiative Transfer in Natural Waters,” (Academic, San Diego, 1994).

Moore, C. M.

J. R. V. Zaneveld, J. C. Kitchen, C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

Moore, G. F.

Morel, A.

Pegau, W. S.

G. C. Chang, T. D. Dickey, C. D. Mobley, E. Boss, W. S. Pegau, “Toward closure of upwelling radiance in coastal waters,” Appl. Opt. 42, 1574–1582 (2003).
[CrossRef] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, C7, 14129–14142 (2001).

W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
[CrossRef] [PubMed]

Piskozub, J.

D. Stramski, J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
[CrossRef] [PubMed]

J. Piskozub, P. J. Flatau, J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Oceanic Technol. 18, 438–445 (2001).
[CrossRef]

Pope, R. M.

Roesler, C. S.

Smith, R. C.

Smyth, T. J.

Stramska, M.

M. Stramska, D. Stramski, B. G. Mitchell, C. D. Mobley, “Estimation of the absorption and backscattering coefficients from in-water radiometric measurements,” Limnol. Oceanogr. 45, 628–641 (2000).
[CrossRef]

Stramski, D.

D. Stramski, J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
[CrossRef] [PubMed]

M. Stramska, D. Stramski, B. G. Mitchell, C. D. Mobley, “Estimation of the absorption and backscattering coefficients from in-water radiometric measurements,” Limnol. Oceanogr. 45, 628–641 (2000).
[CrossRef]

Sundman, L. K.

Twardowski, M. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, C7, 14129–14142 (2001).

Tyrrell, T.

Wood, P.

A. Cunningham, J. C. Boyle, P. Wood, “Radiative transfer modelling of the relationship between seawater composition and remote sensing reflectance in sea lochs and fjords,” Int. J. Remote Sensing 23, 3713–3724 (2002).
[CrossRef]

Zaneveld, J. R. V.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, C7, 14129–14142 (2001).

J. Piskozub, P. J. Flatau, J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Oceanic Technol. 18, 438–445 (2001).
[CrossRef]

W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
[CrossRef] [PubMed]

J. R. V. Zaneveld, J. C. Kitchen, C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

Appl. Opt. (12)

R. C. Smith, K. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

J. T. O. Kirk, “Monte Carlo modeling of the performance of a reflective tube absorption meter,” Appl. Opt. 31, 6463–6468 (1992).
[CrossRef] [PubMed]

W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef] [PubMed]

R. A. Leathers, C. S. Roesler, N. J. McCormick, “Ocean inherent optical property determination from in-water light field measurements,” Appl. Opt. 38, 5096–5103 (1999).
[CrossRef]

T. J. Smyth, G. F. Moore, S. B. Groom, P. E. Land, T. Tyrrell, “Optical modeling and measurements of a coccolithophore bloom,” Appl. Opt. 41, 7679–7688 (2002).
[CrossRef]

G. C. Chang, T. D. Dickey, C. D. Mobley, E. Boss, W. S. Pegau, “Toward closure of upwelling radiance in coastal waters,” Appl. Opt. 42, 1574–1582 (2003).
[CrossRef] [PubMed]

D. McKee, A. Cunningham, S. Craig, “Retrieval of inherent optical properties from in situ radiometric measurements in case II waters,” Appl. Opt. 42, 2804–2810 (2003).
[CrossRef] [PubMed]

D. Stramski, J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
[CrossRef] [PubMed]

D. McKee, A. Cunningham, S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369–4374 (2003).
[CrossRef] [PubMed]

Int. J. Remote Sensing (1)

A. Cunningham, J. C. Boyle, P. Wood, “Radiative transfer modelling of the relationship between seawater composition and remote sensing reflectance in sea lochs and fjords,” Int. J. Remote Sensing 23, 3713–3724 (2002).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

J. Piskozub, P. J. Flatau, J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Oceanic Technol. 18, 438–445 (2001).
[CrossRef]

J. Geophys. Res. (1)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, C7, 14129–14142 (2001).

Limnol. Oceanogr. (2)

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr. 34, 1389–1409 (1989).

M. Stramska, D. Stramski, B. G. Mitchell, C. D. Mobley, “Estimation of the absorption and backscattering coefficients from in-water radiometric measurements,” Limnol. Oceanogr. 45, 628–641 (2000).
[CrossRef]

Other (3)

C. D. Mobley, “Light and Water: Radiative Transfer in Natural Waters,” (Academic, San Diego, 1994).

G. R. Fournier, J. L. Forand, “Analytic phase function for ocean water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 194–201 (1994).
[CrossRef]

J. R. V. Zaneveld, J. C. Kitchen, C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Sigma-corrected total backscattering values show increasing divergence from uncorrected total backscattering as the turbidity of the water increases.

Fig. 2
Fig. 2

Backscattering ratios are generally greater in the blue (470 nm) than in the red (676 nm) for most stations in the Irish and Celtic Seas.

Fig. 3
Fig. 3

Ratio of backscattering ratios at 470 and 676 nm, B, shows significant variability for surface waters of the Irish and Celtic Seas. Less than 5% of stations have a value of B between 0.9 and 1.1, where the scattering phase function might be considered wavelength independent. Most stations have stronger backscattering ratios in the blue than in the red. It can be concluded that the scattering phase function is generally wavelength dependent for these waters.

Fig. 4
Fig. 4

Significant degree of variability is exhibited in the relation between backscattering ratios at 470 and 676 nm for the top 10 m of four sample stations. Lines (gradients between 1.0 and 1.8) indicate the strength of the wavelength dependency in the backscattering ratio, B.

Fig. 5
Fig. 5

IOPs of stations B4 and ST19 are significantly different in terms of (a) absorption at 488 nm, (b) scattering at 488 nm, (c) backscattering at 470 nm, and (d) backscattering ratio at 470 nm. B4 is a relatively clear station, whereas ST19 is quite turbid.

Fig. 6
Fig. 6

Standard IOPs provide satisfactory matches between measured (SPMR) and modeled (Hydrolight) (a) downward irradiance, Ed, and (b) upward radiance, u, for station B4. The match between measured and modeled Ed(c) is also satisfactory for ST19. The small overestimate of modeled upward radiance for ST19 (d) may be attributable to limitations in the performance of sigma correction of backscattering data for very turbid water such as this.

Fig. 7
Fig. 7

IOPs of stations ST12 and ST16 indicate (a) similar levels of absorption at 488 nm, (b) significantly higher levels of scattering at 488 nm, (c) backscattering at 470 nm, and (d) backscattering ratio at 470 nm for ST12. All IOPs were generated with standard correction algorithms.

Fig. 8
Fig. 8

Use of standard IOPs in radiance transfer calculations results in systematic underestimates of both Ed[(a) and (c)] and Lu[(b) and (d)] for both ST12 and ST16. This underestimate is consistent with the effects of a wavelength-dependent scattering phase function on the scattering correction of in situ measurements of absorption.

Fig. 9
Fig. 9

Average percentage error over the top 10 m of the water column between measured and modeled values of both Ed and Lu can be minimized for stations ST12 and ST16 by varying only the value of F(λ, λr) used in the scattering correction for the AC-9 measurements. The optimal value of F(λ, λr) varies with station, and the magnitude of the initial error varies with the size of the scattering signal.

Fig. 10
Fig. 10

Improved matches between modeled and measured values of Ed and Lu are obtained with values of F(λ, λr) = 1.2 for ST12 [(a) and (b)], and F(λ, λr) = 1.3 for ST16 [(c) and (d)].

Fig. 11
Fig. 11

Absorption values obtained with the modified scattering correction algorithm and F(λ, λr) > 1.0 are generally lower than standard (F(λ,λr) = 1.0) values of absorption. Higher levels of scattering at ST12 than at ST16 are responsible for the greater difference between standard and modified absorption values at ST12 despite the optimal value of F(λ, λr) being lower for this station.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

a n ( λ ) = a i ( λ ) - a i ( λ r ) c i ( λ ) - a i ( λ ) c i ( λ r ) - a i ( λ r ) F ( λ , λ r ) ,
F ( λ , λ r ) = [ k a ( λ ) 1 - k a ( λ ) - k c ( λ ) / k a ( λ r ) 1 - k a ( λ r ) - k c ( λ r ) ] ,
b b = σ b b u ,
σ = k 0 + k 1 K b b + k 2 K b b 2 ,
K b b = a + 0.75 b .
B = ( b b / b ) 470 ( b b / b ) 676 .
R L = f Q b b a ,
K d = a + b b μ d .
R L = L u E d ,
ɛ = n ( x in - x mod ) / x in × 100 n ,

Metrics